2908 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			2908 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
/*
 | 
						|
 *      bignumber.js v9.3.0
 | 
						|
 *      A JavaScript library for arbitrary-precision arithmetic.
 | 
						|
 *      https://github.com/MikeMcl/bignumber.js
 | 
						|
 *      Copyright (c) 2025 Michael Mclaughlin <M8ch88l@gmail.com>
 | 
						|
 *      MIT Licensed.
 | 
						|
 *
 | 
						|
 *      BigNumber.prototype methods     |  BigNumber methods
 | 
						|
 *                                      |
 | 
						|
 *      absoluteValue            abs    |  clone
 | 
						|
 *      comparedTo                      |  config               set
 | 
						|
 *      decimalPlaces            dp     |      DECIMAL_PLACES
 | 
						|
 *      dividedBy                div    |      ROUNDING_MODE
 | 
						|
 *      dividedToIntegerBy       idiv   |      EXPONENTIAL_AT
 | 
						|
 *      exponentiatedBy          pow    |      RANGE
 | 
						|
 *      integerValue                    |      CRYPTO
 | 
						|
 *      isEqualTo                eq     |      MODULO_MODE
 | 
						|
 *      isFinite                        |      POW_PRECISION
 | 
						|
 *      isGreaterThan            gt     |      FORMAT
 | 
						|
 *      isGreaterThanOrEqualTo   gte    |      ALPHABET
 | 
						|
 *      isInteger                       |  isBigNumber
 | 
						|
 *      isLessThan               lt     |  maximum              max
 | 
						|
 *      isLessThanOrEqualTo      lte    |  minimum              min
 | 
						|
 *      isNaN                           |  random
 | 
						|
 *      isNegative                      |  sum
 | 
						|
 *      isPositive                      |
 | 
						|
 *      isZero                          |
 | 
						|
 *      minus                           |
 | 
						|
 *      modulo                   mod    |
 | 
						|
 *      multipliedBy             times  |
 | 
						|
 *      negated                         |
 | 
						|
 *      plus                            |
 | 
						|
 *      precision                sd     |
 | 
						|
 *      shiftedBy                       |
 | 
						|
 *      squareRoot               sqrt   |
 | 
						|
 *      toExponential                   |
 | 
						|
 *      toFixed                         |
 | 
						|
 *      toFormat                        |
 | 
						|
 *      toFraction                      |
 | 
						|
 *      toJSON                          |
 | 
						|
 *      toNumber                        |
 | 
						|
 *      toPrecision                     |
 | 
						|
 *      toString                        |
 | 
						|
 *      valueOf                         |
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
var
 | 
						|
  isNumeric = /^-?(?:\d+(?:\.\d*)?|\.\d+)(?:e[+-]?\d+)?$/i,
 | 
						|
  mathceil = Math.ceil,
 | 
						|
  mathfloor = Math.floor,
 | 
						|
 | 
						|
  bignumberError = '[BigNumber Error] ',
 | 
						|
  tooManyDigits = bignumberError + 'Number primitive has more than 15 significant digits: ',
 | 
						|
 | 
						|
  BASE = 1e14,
 | 
						|
  LOG_BASE = 14,
 | 
						|
  MAX_SAFE_INTEGER = 0x1fffffffffffff,         // 2^53 - 1
 | 
						|
  // MAX_INT32 = 0x7fffffff,                   // 2^31 - 1
 | 
						|
  POWS_TEN = [1, 10, 100, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13],
 | 
						|
  SQRT_BASE = 1e7,
 | 
						|
 | 
						|
  // EDITABLE
 | 
						|
  // The limit on the value of DECIMAL_PLACES, TO_EXP_NEG, TO_EXP_POS, MIN_EXP, MAX_EXP, and
 | 
						|
  // the arguments to toExponential, toFixed, toFormat, and toPrecision.
 | 
						|
  MAX = 1E9;                                   // 0 to MAX_INT32
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Create and return a BigNumber constructor.
 | 
						|
 */
 | 
						|
function clone(configObject) {
 | 
						|
  var div, convertBase, parseNumeric,
 | 
						|
    P = BigNumber.prototype = { constructor: BigNumber, toString: null, valueOf: null },
 | 
						|
    ONE = new BigNumber(1),
 | 
						|
 | 
						|
 | 
						|
    //----------------------------- EDITABLE CONFIG DEFAULTS -------------------------------
 | 
						|
 | 
						|
 | 
						|
    // The default values below must be integers within the inclusive ranges stated.
 | 
						|
    // The values can also be changed at run-time using BigNumber.set.
 | 
						|
 | 
						|
    // The maximum number of decimal places for operations involving division.
 | 
						|
    DECIMAL_PLACES = 20,                     // 0 to MAX
 | 
						|
 | 
						|
    // The rounding mode used when rounding to the above decimal places, and when using
 | 
						|
    // toExponential, toFixed, toFormat and toPrecision, and round (default value).
 | 
						|
    // UP         0 Away from zero.
 | 
						|
    // DOWN       1 Towards zero.
 | 
						|
    // CEIL       2 Towards +Infinity.
 | 
						|
    // FLOOR      3 Towards -Infinity.
 | 
						|
    // HALF_UP    4 Towards nearest neighbour. If equidistant, up.
 | 
						|
    // HALF_DOWN  5 Towards nearest neighbour. If equidistant, down.
 | 
						|
    // HALF_EVEN  6 Towards nearest neighbour. If equidistant, towards even neighbour.
 | 
						|
    // HALF_CEIL  7 Towards nearest neighbour. If equidistant, towards +Infinity.
 | 
						|
    // HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.
 | 
						|
    ROUNDING_MODE = 4,                       // 0 to 8
 | 
						|
 | 
						|
    // EXPONENTIAL_AT : [TO_EXP_NEG , TO_EXP_POS]
 | 
						|
 | 
						|
    // The exponent value at and beneath which toString returns exponential notation.
 | 
						|
    // Number type: -7
 | 
						|
    TO_EXP_NEG = -7,                         // 0 to -MAX
 | 
						|
 | 
						|
    // The exponent value at and above which toString returns exponential notation.
 | 
						|
    // Number type: 21
 | 
						|
    TO_EXP_POS = 21,                         // 0 to MAX
 | 
						|
 | 
						|
    // RANGE : [MIN_EXP, MAX_EXP]
 | 
						|
 | 
						|
    // The minimum exponent value, beneath which underflow to zero occurs.
 | 
						|
    // Number type: -324  (5e-324)
 | 
						|
    MIN_EXP = -1e7,                          // -1 to -MAX
 | 
						|
 | 
						|
    // The maximum exponent value, above which overflow to Infinity occurs.
 | 
						|
    // Number type:  308  (1.7976931348623157e+308)
 | 
						|
    // For MAX_EXP > 1e7, e.g. new BigNumber('1e100000000').plus(1) may be slow.
 | 
						|
    MAX_EXP = 1e7,                           // 1 to MAX
 | 
						|
 | 
						|
    // Whether to use cryptographically-secure random number generation, if available.
 | 
						|
    CRYPTO = false,                          // true or false
 | 
						|
 | 
						|
    // The modulo mode used when calculating the modulus: a mod n.
 | 
						|
    // The quotient (q = a / n) is calculated according to the corresponding rounding mode.
 | 
						|
    // The remainder (r) is calculated as: r = a - n * q.
 | 
						|
    //
 | 
						|
    // UP        0 The remainder is positive if the dividend is negative, else is negative.
 | 
						|
    // DOWN      1 The remainder has the same sign as the dividend.
 | 
						|
    //             This modulo mode is commonly known as 'truncated division' and is
 | 
						|
    //             equivalent to (a % n) in JavaScript.
 | 
						|
    // FLOOR     3 The remainder has the same sign as the divisor (Python %).
 | 
						|
    // HALF_EVEN 6 This modulo mode implements the IEEE 754 remainder function.
 | 
						|
    // EUCLID    9 Euclidian division. q = sign(n) * floor(a / abs(n)).
 | 
						|
    //             The remainder is always positive.
 | 
						|
    //
 | 
						|
    // The truncated division, floored division, Euclidian division and IEEE 754 remainder
 | 
						|
    // modes are commonly used for the modulus operation.
 | 
						|
    // Although the other rounding modes can also be used, they may not give useful results.
 | 
						|
    MODULO_MODE = 1,                         // 0 to 9
 | 
						|
 | 
						|
    // The maximum number of significant digits of the result of the exponentiatedBy operation.
 | 
						|
    // If POW_PRECISION is 0, there will be unlimited significant digits.
 | 
						|
    POW_PRECISION = 0,                       // 0 to MAX
 | 
						|
 | 
						|
    // The format specification used by the BigNumber.prototype.toFormat method.
 | 
						|
    FORMAT = {
 | 
						|
      prefix: '',
 | 
						|
      groupSize: 3,
 | 
						|
      secondaryGroupSize: 0,
 | 
						|
      groupSeparator: ',',
 | 
						|
      decimalSeparator: '.',
 | 
						|
      fractionGroupSize: 0,
 | 
						|
      fractionGroupSeparator: '\xA0',        // non-breaking space
 | 
						|
      suffix: ''
 | 
						|
    },
 | 
						|
 | 
						|
    // The alphabet used for base conversion. It must be at least 2 characters long, with no '+',
 | 
						|
    // '-', '.', whitespace, or repeated character.
 | 
						|
    // '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'
 | 
						|
    ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyz',
 | 
						|
    alphabetHasNormalDecimalDigits = true;
 | 
						|
 | 
						|
 | 
						|
  //------------------------------------------------------------------------------------------
 | 
						|
 | 
						|
 | 
						|
  // CONSTRUCTOR
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * The BigNumber constructor and exported function.
 | 
						|
   * Create and return a new instance of a BigNumber object.
 | 
						|
   *
 | 
						|
   * v {number|string|BigNumber} A numeric value.
 | 
						|
   * [b] {number} The base of v. Integer, 2 to ALPHABET.length inclusive.
 | 
						|
   */
 | 
						|
  function BigNumber(v, b) {
 | 
						|
    var alphabet, c, caseChanged, e, i, isNum, len, str,
 | 
						|
      x = this;
 | 
						|
 | 
						|
    // Enable constructor call without `new`.
 | 
						|
    if (!(x instanceof BigNumber)) return new BigNumber(v, b);
 | 
						|
 | 
						|
    if (b == null) {
 | 
						|
 | 
						|
      if (v && v._isBigNumber === true) {
 | 
						|
        x.s = v.s;
 | 
						|
 | 
						|
        if (!v.c || v.e > MAX_EXP) {
 | 
						|
          x.c = x.e = null;
 | 
						|
        } else if (v.e < MIN_EXP) {
 | 
						|
          x.c = [x.e = 0];
 | 
						|
        } else {
 | 
						|
          x.e = v.e;
 | 
						|
          x.c = v.c.slice();
 | 
						|
        }
 | 
						|
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      if ((isNum = typeof v == 'number') && v * 0 == 0) {
 | 
						|
 | 
						|
        // Use `1 / n` to handle minus zero also.
 | 
						|
        x.s = 1 / v < 0 ? (v = -v, -1) : 1;
 | 
						|
 | 
						|
        // Fast path for integers, where n < 2147483648 (2**31).
 | 
						|
        if (v === ~~v) {
 | 
						|
          for (e = 0, i = v; i >= 10; i /= 10, e++);
 | 
						|
 | 
						|
          if (e > MAX_EXP) {
 | 
						|
            x.c = x.e = null;
 | 
						|
          } else {
 | 
						|
            x.e = e;
 | 
						|
            x.c = [v];
 | 
						|
          }
 | 
						|
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
        str = String(v);
 | 
						|
      } else {
 | 
						|
 | 
						|
        if (!isNumeric.test(str = String(v))) return parseNumeric(x, str, isNum);
 | 
						|
 | 
						|
        x.s = str.charCodeAt(0) == 45 ? (str = str.slice(1), -1) : 1;
 | 
						|
      }
 | 
						|
 | 
						|
      // Decimal point?
 | 
						|
      if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');
 | 
						|
 | 
						|
      // Exponential form?
 | 
						|
      if ((i = str.search(/e/i)) > 0) {
 | 
						|
 | 
						|
        // Determine exponent.
 | 
						|
        if (e < 0) e = i;
 | 
						|
        e += +str.slice(i + 1);
 | 
						|
        str = str.substring(0, i);
 | 
						|
      } else if (e < 0) {
 | 
						|
 | 
						|
        // Integer.
 | 
						|
        e = str.length;
 | 
						|
      }
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
      // '[BigNumber Error] Base {not a primitive number|not an integer|out of range}: {b}'
 | 
						|
      intCheck(b, 2, ALPHABET.length, 'Base');
 | 
						|
 | 
						|
      // Allow exponential notation to be used with base 10 argument, while
 | 
						|
      // also rounding to DECIMAL_PLACES as with other bases.
 | 
						|
      if (b == 10 && alphabetHasNormalDecimalDigits) {
 | 
						|
        x = new BigNumber(v);
 | 
						|
        return round(x, DECIMAL_PLACES + x.e + 1, ROUNDING_MODE);
 | 
						|
      }
 | 
						|
 | 
						|
      str = String(v);
 | 
						|
 | 
						|
      if (isNum = typeof v == 'number') {
 | 
						|
 | 
						|
        // Avoid potential interpretation of Infinity and NaN as base 44+ values.
 | 
						|
        if (v * 0 != 0) return parseNumeric(x, str, isNum, b);
 | 
						|
 | 
						|
        x.s = 1 / v < 0 ? (str = str.slice(1), -1) : 1;
 | 
						|
 | 
						|
        // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}'
 | 
						|
        if (BigNumber.DEBUG && str.replace(/^0\.0*|\./, '').length > 15) {
 | 
						|
          throw Error
 | 
						|
           (tooManyDigits + v);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        x.s = str.charCodeAt(0) === 45 ? (str = str.slice(1), -1) : 1;
 | 
						|
      }
 | 
						|
 | 
						|
      alphabet = ALPHABET.slice(0, b);
 | 
						|
      e = i = 0;
 | 
						|
 | 
						|
      // Check that str is a valid base b number.
 | 
						|
      // Don't use RegExp, so alphabet can contain special characters.
 | 
						|
      for (len = str.length; i < len; i++) {
 | 
						|
        if (alphabet.indexOf(c = str.charAt(i)) < 0) {
 | 
						|
          if (c == '.') {
 | 
						|
 | 
						|
            // If '.' is not the first character and it has not be found before.
 | 
						|
            if (i > e) {
 | 
						|
              e = len;
 | 
						|
              continue;
 | 
						|
            }
 | 
						|
          } else if (!caseChanged) {
 | 
						|
 | 
						|
            // Allow e.g. hexadecimal 'FF' as well as 'ff'.
 | 
						|
            if (str == str.toUpperCase() && (str = str.toLowerCase()) ||
 | 
						|
                str == str.toLowerCase() && (str = str.toUpperCase())) {
 | 
						|
              caseChanged = true;
 | 
						|
              i = -1;
 | 
						|
              e = 0;
 | 
						|
              continue;
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          return parseNumeric(x, String(v), isNum, b);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Prevent later check for length on converted number.
 | 
						|
      isNum = false;
 | 
						|
      str = convertBase(str, b, 10, x.s);
 | 
						|
 | 
						|
      // Decimal point?
 | 
						|
      if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');
 | 
						|
      else e = str.length;
 | 
						|
    }
 | 
						|
 | 
						|
    // Determine leading zeros.
 | 
						|
    for (i = 0; str.charCodeAt(i) === 48; i++);
 | 
						|
 | 
						|
    // Determine trailing zeros.
 | 
						|
    for (len = str.length; str.charCodeAt(--len) === 48;);
 | 
						|
 | 
						|
    if (str = str.slice(i, ++len)) {
 | 
						|
      len -= i;
 | 
						|
 | 
						|
      // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}'
 | 
						|
      if (isNum && BigNumber.DEBUG &&
 | 
						|
        len > 15 && (v > MAX_SAFE_INTEGER || v !== mathfloor(v))) {
 | 
						|
          throw Error
 | 
						|
           (tooManyDigits + (x.s * v));
 | 
						|
      }
 | 
						|
 | 
						|
       // Overflow?
 | 
						|
      if ((e = e - i - 1) > MAX_EXP) {
 | 
						|
 | 
						|
        // Infinity.
 | 
						|
        x.c = x.e = null;
 | 
						|
 | 
						|
      // Underflow?
 | 
						|
      } else if (e < MIN_EXP) {
 | 
						|
 | 
						|
        // Zero.
 | 
						|
        x.c = [x.e = 0];
 | 
						|
      } else {
 | 
						|
        x.e = e;
 | 
						|
        x.c = [];
 | 
						|
 | 
						|
        // Transform base
 | 
						|
 | 
						|
        // e is the base 10 exponent.
 | 
						|
        // i is where to slice str to get the first element of the coefficient array.
 | 
						|
        i = (e + 1) % LOG_BASE;
 | 
						|
        if (e < 0) i += LOG_BASE;  // i < 1
 | 
						|
 | 
						|
        if (i < len) {
 | 
						|
          if (i) x.c.push(+str.slice(0, i));
 | 
						|
 | 
						|
          for (len -= LOG_BASE; i < len;) {
 | 
						|
            x.c.push(+str.slice(i, i += LOG_BASE));
 | 
						|
          }
 | 
						|
 | 
						|
          i = LOG_BASE - (str = str.slice(i)).length;
 | 
						|
        } else {
 | 
						|
          i -= len;
 | 
						|
        }
 | 
						|
 | 
						|
        for (; i--; str += '0');
 | 
						|
        x.c.push(+str);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
 | 
						|
      // Zero.
 | 
						|
      x.c = [x.e = 0];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // CONSTRUCTOR PROPERTIES
 | 
						|
 | 
						|
 | 
						|
  BigNumber.clone = clone;
 | 
						|
 | 
						|
  BigNumber.ROUND_UP = 0;
 | 
						|
  BigNumber.ROUND_DOWN = 1;
 | 
						|
  BigNumber.ROUND_CEIL = 2;
 | 
						|
  BigNumber.ROUND_FLOOR = 3;
 | 
						|
  BigNumber.ROUND_HALF_UP = 4;
 | 
						|
  BigNumber.ROUND_HALF_DOWN = 5;
 | 
						|
  BigNumber.ROUND_HALF_EVEN = 6;
 | 
						|
  BigNumber.ROUND_HALF_CEIL = 7;
 | 
						|
  BigNumber.ROUND_HALF_FLOOR = 8;
 | 
						|
  BigNumber.EUCLID = 9;
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Configure infrequently-changing library-wide settings.
 | 
						|
   *
 | 
						|
   * Accept an object with the following optional properties (if the value of a property is
 | 
						|
   * a number, it must be an integer within the inclusive range stated):
 | 
						|
   *
 | 
						|
   *   DECIMAL_PLACES   {number}           0 to MAX
 | 
						|
   *   ROUNDING_MODE    {number}           0 to 8
 | 
						|
   *   EXPONENTIAL_AT   {number|number[]}  -MAX to MAX  or  [-MAX to 0, 0 to MAX]
 | 
						|
   *   RANGE            {number|number[]}  -MAX to MAX (not zero)  or  [-MAX to -1, 1 to MAX]
 | 
						|
   *   CRYPTO           {boolean}          true or false
 | 
						|
   *   MODULO_MODE      {number}           0 to 9
 | 
						|
   *   POW_PRECISION       {number}           0 to MAX
 | 
						|
   *   ALPHABET         {string}           A string of two or more unique characters which does
 | 
						|
   *                                       not contain '.'.
 | 
						|
   *   FORMAT           {object}           An object with some of the following properties:
 | 
						|
   *     prefix                 {string}
 | 
						|
   *     groupSize              {number}
 | 
						|
   *     secondaryGroupSize     {number}
 | 
						|
   *     groupSeparator         {string}
 | 
						|
   *     decimalSeparator       {string}
 | 
						|
   *     fractionGroupSize      {number}
 | 
						|
   *     fractionGroupSeparator {string}
 | 
						|
   *     suffix                 {string}
 | 
						|
   *
 | 
						|
   * (The values assigned to the above FORMAT object properties are not checked for validity.)
 | 
						|
   *
 | 
						|
   * E.g.
 | 
						|
   * BigNumber.config({ DECIMAL_PLACES : 20, ROUNDING_MODE : 4 })
 | 
						|
   *
 | 
						|
   * Ignore properties/parameters set to null or undefined, except for ALPHABET.
 | 
						|
   *
 | 
						|
   * Return an object with the properties current values.
 | 
						|
   */
 | 
						|
  BigNumber.config = BigNumber.set = function (obj) {
 | 
						|
    var p, v;
 | 
						|
 | 
						|
    if (obj != null) {
 | 
						|
 | 
						|
      if (typeof obj == 'object') {
 | 
						|
 | 
						|
        // DECIMAL_PLACES {number} Integer, 0 to MAX inclusive.
 | 
						|
        // '[BigNumber Error] DECIMAL_PLACES {not a primitive number|not an integer|out of range}: {v}'
 | 
						|
        if (obj.hasOwnProperty(p = 'DECIMAL_PLACES')) {
 | 
						|
          v = obj[p];
 | 
						|
          intCheck(v, 0, MAX, p);
 | 
						|
          DECIMAL_PLACES = v;
 | 
						|
        }
 | 
						|
 | 
						|
        // ROUNDING_MODE {number} Integer, 0 to 8 inclusive.
 | 
						|
        // '[BigNumber Error] ROUNDING_MODE {not a primitive number|not an integer|out of range}: {v}'
 | 
						|
        if (obj.hasOwnProperty(p = 'ROUNDING_MODE')) {
 | 
						|
          v = obj[p];
 | 
						|
          intCheck(v, 0, 8, p);
 | 
						|
          ROUNDING_MODE = v;
 | 
						|
        }
 | 
						|
 | 
						|
        // EXPONENTIAL_AT {number|number[]}
 | 
						|
        // Integer, -MAX to MAX inclusive or
 | 
						|
        // [integer -MAX to 0 inclusive, 0 to MAX inclusive].
 | 
						|
        // '[BigNumber Error] EXPONENTIAL_AT {not a primitive number|not an integer|out of range}: {v}'
 | 
						|
        if (obj.hasOwnProperty(p = 'EXPONENTIAL_AT')) {
 | 
						|
          v = obj[p];
 | 
						|
          if (v && v.pop) {
 | 
						|
            intCheck(v[0], -MAX, 0, p);
 | 
						|
            intCheck(v[1], 0, MAX, p);
 | 
						|
            TO_EXP_NEG = v[0];
 | 
						|
            TO_EXP_POS = v[1];
 | 
						|
          } else {
 | 
						|
            intCheck(v, -MAX, MAX, p);
 | 
						|
            TO_EXP_NEG = -(TO_EXP_POS = v < 0 ? -v : v);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or
 | 
						|
        // [integer -MAX to -1 inclusive, integer 1 to MAX inclusive].
 | 
						|
        // '[BigNumber Error] RANGE {not a primitive number|not an integer|out of range|cannot be zero}: {v}'
 | 
						|
        if (obj.hasOwnProperty(p = 'RANGE')) {
 | 
						|
          v = obj[p];
 | 
						|
          if (v && v.pop) {
 | 
						|
            intCheck(v[0], -MAX, -1, p);
 | 
						|
            intCheck(v[1], 1, MAX, p);
 | 
						|
            MIN_EXP = v[0];
 | 
						|
            MAX_EXP = v[1];
 | 
						|
          } else {
 | 
						|
            intCheck(v, -MAX, MAX, p);
 | 
						|
            if (v) {
 | 
						|
              MIN_EXP = -(MAX_EXP = v < 0 ? -v : v);
 | 
						|
            } else {
 | 
						|
              throw Error
 | 
						|
               (bignumberError + p + ' cannot be zero: ' + v);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // CRYPTO {boolean} true or false.
 | 
						|
        // '[BigNumber Error] CRYPTO not true or false: {v}'
 | 
						|
        // '[BigNumber Error] crypto unavailable'
 | 
						|
        if (obj.hasOwnProperty(p = 'CRYPTO')) {
 | 
						|
          v = obj[p];
 | 
						|
          if (v === !!v) {
 | 
						|
            if (v) {
 | 
						|
              if (typeof crypto != 'undefined' && crypto &&
 | 
						|
               (crypto.getRandomValues || crypto.randomBytes)) {
 | 
						|
                CRYPTO = v;
 | 
						|
              } else {
 | 
						|
                CRYPTO = !v;
 | 
						|
                throw Error
 | 
						|
                 (bignumberError + 'crypto unavailable');
 | 
						|
              }
 | 
						|
            } else {
 | 
						|
              CRYPTO = v;
 | 
						|
            }
 | 
						|
          } else {
 | 
						|
            throw Error
 | 
						|
             (bignumberError + p + ' not true or false: ' + v);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // MODULO_MODE {number} Integer, 0 to 9 inclusive.
 | 
						|
        // '[BigNumber Error] MODULO_MODE {not a primitive number|not an integer|out of range}: {v}'
 | 
						|
        if (obj.hasOwnProperty(p = 'MODULO_MODE')) {
 | 
						|
          v = obj[p];
 | 
						|
          intCheck(v, 0, 9, p);
 | 
						|
          MODULO_MODE = v;
 | 
						|
        }
 | 
						|
 | 
						|
        // POW_PRECISION {number} Integer, 0 to MAX inclusive.
 | 
						|
        // '[BigNumber Error] POW_PRECISION {not a primitive number|not an integer|out of range}: {v}'
 | 
						|
        if (obj.hasOwnProperty(p = 'POW_PRECISION')) {
 | 
						|
          v = obj[p];
 | 
						|
          intCheck(v, 0, MAX, p);
 | 
						|
          POW_PRECISION = v;
 | 
						|
        }
 | 
						|
 | 
						|
        // FORMAT {object}
 | 
						|
        // '[BigNumber Error] FORMAT not an object: {v}'
 | 
						|
        if (obj.hasOwnProperty(p = 'FORMAT')) {
 | 
						|
          v = obj[p];
 | 
						|
          if (typeof v == 'object') FORMAT = v;
 | 
						|
          else throw Error
 | 
						|
           (bignumberError + p + ' not an object: ' + v);
 | 
						|
        }
 | 
						|
 | 
						|
        // ALPHABET {string}
 | 
						|
        // '[BigNumber Error] ALPHABET invalid: {v}'
 | 
						|
        if (obj.hasOwnProperty(p = 'ALPHABET')) {
 | 
						|
          v = obj[p];
 | 
						|
 | 
						|
          // Disallow if less than two characters,
 | 
						|
          // or if it contains '+', '-', '.', whitespace, or a repeated character.
 | 
						|
          if (typeof v == 'string' && !/^.?$|[+\-.\s]|(.).*\1/.test(v)) {
 | 
						|
            alphabetHasNormalDecimalDigits = v.slice(0, 10) == '0123456789';
 | 
						|
            ALPHABET = v;
 | 
						|
          } else {
 | 
						|
            throw Error
 | 
						|
             (bignumberError + p + ' invalid: ' + v);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
      } else {
 | 
						|
 | 
						|
        // '[BigNumber Error] Object expected: {v}'
 | 
						|
        throw Error
 | 
						|
         (bignumberError + 'Object expected: ' + obj);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return {
 | 
						|
      DECIMAL_PLACES: DECIMAL_PLACES,
 | 
						|
      ROUNDING_MODE: ROUNDING_MODE,
 | 
						|
      EXPONENTIAL_AT: [TO_EXP_NEG, TO_EXP_POS],
 | 
						|
      RANGE: [MIN_EXP, MAX_EXP],
 | 
						|
      CRYPTO: CRYPTO,
 | 
						|
      MODULO_MODE: MODULO_MODE,
 | 
						|
      POW_PRECISION: POW_PRECISION,
 | 
						|
      FORMAT: FORMAT,
 | 
						|
      ALPHABET: ALPHABET
 | 
						|
    };
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return true if v is a BigNumber instance, otherwise return false.
 | 
						|
   *
 | 
						|
   * If BigNumber.DEBUG is true, throw if a BigNumber instance is not well-formed.
 | 
						|
   *
 | 
						|
   * v {any}
 | 
						|
   *
 | 
						|
   * '[BigNumber Error] Invalid BigNumber: {v}'
 | 
						|
   */
 | 
						|
  BigNumber.isBigNumber = function (v) {
 | 
						|
    if (!v || v._isBigNumber !== true) return false;
 | 
						|
    if (!BigNumber.DEBUG) return true;
 | 
						|
 | 
						|
    var i, n,
 | 
						|
      c = v.c,
 | 
						|
      e = v.e,
 | 
						|
      s = v.s;
 | 
						|
 | 
						|
    out: if ({}.toString.call(c) == '[object Array]') {
 | 
						|
 | 
						|
      if ((s === 1 || s === -1) && e >= -MAX && e <= MAX && e === mathfloor(e)) {
 | 
						|
 | 
						|
        // If the first element is zero, the BigNumber value must be zero.
 | 
						|
        if (c[0] === 0) {
 | 
						|
          if (e === 0 && c.length === 1) return true;
 | 
						|
          break out;
 | 
						|
        }
 | 
						|
 | 
						|
        // Calculate number of digits that c[0] should have, based on the exponent.
 | 
						|
        i = (e + 1) % LOG_BASE;
 | 
						|
        if (i < 1) i += LOG_BASE;
 | 
						|
 | 
						|
        // Calculate number of digits of c[0].
 | 
						|
        //if (Math.ceil(Math.log(c[0] + 1) / Math.LN10) == i) {
 | 
						|
        if (String(c[0]).length == i) {
 | 
						|
 | 
						|
          for (i = 0; i < c.length; i++) {
 | 
						|
            n = c[i];
 | 
						|
            if (n < 0 || n >= BASE || n !== mathfloor(n)) break out;
 | 
						|
          }
 | 
						|
 | 
						|
          // Last element cannot be zero, unless it is the only element.
 | 
						|
          if (n !== 0) return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    // Infinity/NaN
 | 
						|
    } else if (c === null && e === null && (s === null || s === 1 || s === -1)) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    throw Error
 | 
						|
      (bignumberError + 'Invalid BigNumber: ' + v);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return a new BigNumber whose value is the maximum of the arguments.
 | 
						|
   *
 | 
						|
   * arguments {number|string|BigNumber}
 | 
						|
   */
 | 
						|
  BigNumber.maximum = BigNumber.max = function () {
 | 
						|
    return maxOrMin(arguments, -1);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return a new BigNumber whose value is the minimum of the arguments.
 | 
						|
   *
 | 
						|
   * arguments {number|string|BigNumber}
 | 
						|
   */
 | 
						|
  BigNumber.minimum = BigNumber.min = function () {
 | 
						|
    return maxOrMin(arguments, 1);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return a new BigNumber with a random value equal to or greater than 0 and less than 1,
 | 
						|
   * and with dp, or DECIMAL_PLACES if dp is omitted, decimal places (or less if trailing
 | 
						|
   * zeros are produced).
 | 
						|
   *
 | 
						|
   * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
 | 
						|
   *
 | 
						|
   * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp}'
 | 
						|
   * '[BigNumber Error] crypto unavailable'
 | 
						|
   */
 | 
						|
  BigNumber.random = (function () {
 | 
						|
    var pow2_53 = 0x20000000000000;
 | 
						|
 | 
						|
    // Return a 53 bit integer n, where 0 <= n < 9007199254740992.
 | 
						|
    // Check if Math.random() produces more than 32 bits of randomness.
 | 
						|
    // If it does, assume at least 53 bits are produced, otherwise assume at least 30 bits.
 | 
						|
    // 0x40000000 is 2^30, 0x800000 is 2^23, 0x1fffff is 2^21 - 1.
 | 
						|
    var random53bitInt = (Math.random() * pow2_53) & 0x1fffff
 | 
						|
     ? function () { return mathfloor(Math.random() * pow2_53); }
 | 
						|
     : function () { return ((Math.random() * 0x40000000 | 0) * 0x800000) +
 | 
						|
       (Math.random() * 0x800000 | 0); };
 | 
						|
 | 
						|
    return function (dp) {
 | 
						|
      var a, b, e, k, v,
 | 
						|
        i = 0,
 | 
						|
        c = [],
 | 
						|
        rand = new BigNumber(ONE);
 | 
						|
 | 
						|
      if (dp == null) dp = DECIMAL_PLACES;
 | 
						|
      else intCheck(dp, 0, MAX);
 | 
						|
 | 
						|
      k = mathceil(dp / LOG_BASE);
 | 
						|
 | 
						|
      if (CRYPTO) {
 | 
						|
 | 
						|
        // Browsers supporting crypto.getRandomValues.
 | 
						|
        if (crypto.getRandomValues) {
 | 
						|
 | 
						|
          a = crypto.getRandomValues(new Uint32Array(k *= 2));
 | 
						|
 | 
						|
          for (; i < k;) {
 | 
						|
 | 
						|
            // 53 bits:
 | 
						|
            // ((Math.pow(2, 32) - 1) * Math.pow(2, 21)).toString(2)
 | 
						|
            // 11111 11111111 11111111 11111111 11100000 00000000 00000000
 | 
						|
            // ((Math.pow(2, 32) - 1) >>> 11).toString(2)
 | 
						|
            //                                     11111 11111111 11111111
 | 
						|
            // 0x20000 is 2^21.
 | 
						|
            v = a[i] * 0x20000 + (a[i + 1] >>> 11);
 | 
						|
 | 
						|
            // Rejection sampling:
 | 
						|
            // 0 <= v < 9007199254740992
 | 
						|
            // Probability that v >= 9e15, is
 | 
						|
            // 7199254740992 / 9007199254740992 ~= 0.0008, i.e. 1 in 1251
 | 
						|
            if (v >= 9e15) {
 | 
						|
              b = crypto.getRandomValues(new Uint32Array(2));
 | 
						|
              a[i] = b[0];
 | 
						|
              a[i + 1] = b[1];
 | 
						|
            } else {
 | 
						|
 | 
						|
              // 0 <= v <= 8999999999999999
 | 
						|
              // 0 <= (v % 1e14) <= 99999999999999
 | 
						|
              c.push(v % 1e14);
 | 
						|
              i += 2;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          i = k / 2;
 | 
						|
 | 
						|
        // Node.js supporting crypto.randomBytes.
 | 
						|
        } else if (crypto.randomBytes) {
 | 
						|
 | 
						|
          // buffer
 | 
						|
          a = crypto.randomBytes(k *= 7);
 | 
						|
 | 
						|
          for (; i < k;) {
 | 
						|
 | 
						|
            // 0x1000000000000 is 2^48, 0x10000000000 is 2^40
 | 
						|
            // 0x100000000 is 2^32, 0x1000000 is 2^24
 | 
						|
            // 11111 11111111 11111111 11111111 11111111 11111111 11111111
 | 
						|
            // 0 <= v < 9007199254740992
 | 
						|
            v = ((a[i] & 31) * 0x1000000000000) + (a[i + 1] * 0x10000000000) +
 | 
						|
               (a[i + 2] * 0x100000000) + (a[i + 3] * 0x1000000) +
 | 
						|
               (a[i + 4] << 16) + (a[i + 5] << 8) + a[i + 6];
 | 
						|
 | 
						|
            if (v >= 9e15) {
 | 
						|
              crypto.randomBytes(7).copy(a, i);
 | 
						|
            } else {
 | 
						|
 | 
						|
              // 0 <= (v % 1e14) <= 99999999999999
 | 
						|
              c.push(v % 1e14);
 | 
						|
              i += 7;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          i = k / 7;
 | 
						|
        } else {
 | 
						|
          CRYPTO = false;
 | 
						|
          throw Error
 | 
						|
           (bignumberError + 'crypto unavailable');
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Use Math.random.
 | 
						|
      if (!CRYPTO) {
 | 
						|
 | 
						|
        for (; i < k;) {
 | 
						|
          v = random53bitInt();
 | 
						|
          if (v < 9e15) c[i++] = v % 1e14;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      k = c[--i];
 | 
						|
      dp %= LOG_BASE;
 | 
						|
 | 
						|
      // Convert trailing digits to zeros according to dp.
 | 
						|
      if (k && dp) {
 | 
						|
        v = POWS_TEN[LOG_BASE - dp];
 | 
						|
        c[i] = mathfloor(k / v) * v;
 | 
						|
      }
 | 
						|
 | 
						|
      // Remove trailing elements which are zero.
 | 
						|
      for (; c[i] === 0; c.pop(), i--);
 | 
						|
 | 
						|
      // Zero?
 | 
						|
      if (i < 0) {
 | 
						|
        c = [e = 0];
 | 
						|
      } else {
 | 
						|
 | 
						|
        // Remove leading elements which are zero and adjust exponent accordingly.
 | 
						|
        for (e = -1 ; c[0] === 0; c.splice(0, 1), e -= LOG_BASE);
 | 
						|
 | 
						|
        // Count the digits of the first element of c to determine leading zeros, and...
 | 
						|
        for (i = 1, v = c[0]; v >= 10; v /= 10, i++);
 | 
						|
 | 
						|
        // adjust the exponent accordingly.
 | 
						|
        if (i < LOG_BASE) e -= LOG_BASE - i;
 | 
						|
      }
 | 
						|
 | 
						|
      rand.e = e;
 | 
						|
      rand.c = c;
 | 
						|
      return rand;
 | 
						|
    };
 | 
						|
  })();
 | 
						|
 | 
						|
 | 
						|
   /*
 | 
						|
   * Return a BigNumber whose value is the sum of the arguments.
 | 
						|
   *
 | 
						|
   * arguments {number|string|BigNumber}
 | 
						|
   */
 | 
						|
  BigNumber.sum = function () {
 | 
						|
    var i = 1,
 | 
						|
      args = arguments,
 | 
						|
      sum = new BigNumber(args[0]);
 | 
						|
    for (; i < args.length;) sum = sum.plus(args[i++]);
 | 
						|
    return sum;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  // PRIVATE FUNCTIONS
 | 
						|
 | 
						|
 | 
						|
  // Called by BigNumber and BigNumber.prototype.toString.
 | 
						|
  convertBase = (function () {
 | 
						|
    var decimal = '0123456789';
 | 
						|
 | 
						|
    /*
 | 
						|
     * Convert string of baseIn to an array of numbers of baseOut.
 | 
						|
     * Eg. toBaseOut('255', 10, 16) returns [15, 15].
 | 
						|
     * Eg. toBaseOut('ff', 16, 10) returns [2, 5, 5].
 | 
						|
     */
 | 
						|
    function toBaseOut(str, baseIn, baseOut, alphabet) {
 | 
						|
      var j,
 | 
						|
        arr = [0],
 | 
						|
        arrL,
 | 
						|
        i = 0,
 | 
						|
        len = str.length;
 | 
						|
 | 
						|
      for (; i < len;) {
 | 
						|
        for (arrL = arr.length; arrL--; arr[arrL] *= baseIn);
 | 
						|
 | 
						|
        arr[0] += alphabet.indexOf(str.charAt(i++));
 | 
						|
 | 
						|
        for (j = 0; j < arr.length; j++) {
 | 
						|
 | 
						|
          if (arr[j] > baseOut - 1) {
 | 
						|
            if (arr[j + 1] == null) arr[j + 1] = 0;
 | 
						|
            arr[j + 1] += arr[j] / baseOut | 0;
 | 
						|
            arr[j] %= baseOut;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      return arr.reverse();
 | 
						|
    }
 | 
						|
 | 
						|
    // Convert a numeric string of baseIn to a numeric string of baseOut.
 | 
						|
    // If the caller is toString, we are converting from base 10 to baseOut.
 | 
						|
    // If the caller is BigNumber, we are converting from baseIn to base 10.
 | 
						|
    return function (str, baseIn, baseOut, sign, callerIsToString) {
 | 
						|
      var alphabet, d, e, k, r, x, xc, y,
 | 
						|
        i = str.indexOf('.'),
 | 
						|
        dp = DECIMAL_PLACES,
 | 
						|
        rm = ROUNDING_MODE;
 | 
						|
 | 
						|
      // Non-integer.
 | 
						|
      if (i >= 0) {
 | 
						|
        k = POW_PRECISION;
 | 
						|
 | 
						|
        // Unlimited precision.
 | 
						|
        POW_PRECISION = 0;
 | 
						|
        str = str.replace('.', '');
 | 
						|
        y = new BigNumber(baseIn);
 | 
						|
        x = y.pow(str.length - i);
 | 
						|
        POW_PRECISION = k;
 | 
						|
 | 
						|
        // Convert str as if an integer, then restore the fraction part by dividing the
 | 
						|
        // result by its base raised to a power.
 | 
						|
 | 
						|
        y.c = toBaseOut(toFixedPoint(coeffToString(x.c), x.e, '0'),
 | 
						|
         10, baseOut, decimal);
 | 
						|
        y.e = y.c.length;
 | 
						|
      }
 | 
						|
 | 
						|
      // Convert the number as integer.
 | 
						|
 | 
						|
      xc = toBaseOut(str, baseIn, baseOut, callerIsToString
 | 
						|
       ? (alphabet = ALPHABET, decimal)
 | 
						|
       : (alphabet = decimal, ALPHABET));
 | 
						|
 | 
						|
      // xc now represents str as an integer and converted to baseOut. e is the exponent.
 | 
						|
      e = k = xc.length;
 | 
						|
 | 
						|
      // Remove trailing zeros.
 | 
						|
      for (; xc[--k] == 0; xc.pop());
 | 
						|
 | 
						|
      // Zero?
 | 
						|
      if (!xc[0]) return alphabet.charAt(0);
 | 
						|
 | 
						|
      // Does str represent an integer? If so, no need for the division.
 | 
						|
      if (i < 0) {
 | 
						|
        --e;
 | 
						|
      } else {
 | 
						|
        x.c = xc;
 | 
						|
        x.e = e;
 | 
						|
 | 
						|
        // The sign is needed for correct rounding.
 | 
						|
        x.s = sign;
 | 
						|
        x = div(x, y, dp, rm, baseOut);
 | 
						|
        xc = x.c;
 | 
						|
        r = x.r;
 | 
						|
        e = x.e;
 | 
						|
      }
 | 
						|
 | 
						|
      // xc now represents str converted to baseOut.
 | 
						|
 | 
						|
      // The index of the rounding digit.
 | 
						|
      d = e + dp + 1;
 | 
						|
 | 
						|
      // The rounding digit: the digit to the right of the digit that may be rounded up.
 | 
						|
      i = xc[d];
 | 
						|
 | 
						|
      // Look at the rounding digits and mode to determine whether to round up.
 | 
						|
 | 
						|
      k = baseOut / 2;
 | 
						|
      r = r || d < 0 || xc[d + 1] != null;
 | 
						|
 | 
						|
      r = rm < 4 ? (i != null || r) && (rm == 0 || rm == (x.s < 0 ? 3 : 2))
 | 
						|
            : i > k || i == k &&(rm == 4 || r || rm == 6 && xc[d - 1] & 1 ||
 | 
						|
             rm == (x.s < 0 ? 8 : 7));
 | 
						|
 | 
						|
      // If the index of the rounding digit is not greater than zero, or xc represents
 | 
						|
      // zero, then the result of the base conversion is zero or, if rounding up, a value
 | 
						|
      // such as 0.00001.
 | 
						|
      if (d < 1 || !xc[0]) {
 | 
						|
 | 
						|
        // 1^-dp or 0
 | 
						|
        str = r ? toFixedPoint(alphabet.charAt(1), -dp, alphabet.charAt(0)) : alphabet.charAt(0);
 | 
						|
      } else {
 | 
						|
 | 
						|
        // Truncate xc to the required number of decimal places.
 | 
						|
        xc.length = d;
 | 
						|
 | 
						|
        // Round up?
 | 
						|
        if (r) {
 | 
						|
 | 
						|
          // Rounding up may mean the previous digit has to be rounded up and so on.
 | 
						|
          for (--baseOut; ++xc[--d] > baseOut;) {
 | 
						|
            xc[d] = 0;
 | 
						|
 | 
						|
            if (!d) {
 | 
						|
              ++e;
 | 
						|
              xc = [1].concat(xc);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Determine trailing zeros.
 | 
						|
        for (k = xc.length; !xc[--k];);
 | 
						|
 | 
						|
        // E.g. [4, 11, 15] becomes 4bf.
 | 
						|
        for (i = 0, str = ''; i <= k; str += alphabet.charAt(xc[i++]));
 | 
						|
 | 
						|
        // Add leading zeros, decimal point and trailing zeros as required.
 | 
						|
        str = toFixedPoint(str, e, alphabet.charAt(0));
 | 
						|
      }
 | 
						|
 | 
						|
      // The caller will add the sign.
 | 
						|
      return str;
 | 
						|
    };
 | 
						|
  })();
 | 
						|
 | 
						|
 | 
						|
  // Perform division in the specified base. Called by div and convertBase.
 | 
						|
  div = (function () {
 | 
						|
 | 
						|
    // Assume non-zero x and k.
 | 
						|
    function multiply(x, k, base) {
 | 
						|
      var m, temp, xlo, xhi,
 | 
						|
        carry = 0,
 | 
						|
        i = x.length,
 | 
						|
        klo = k % SQRT_BASE,
 | 
						|
        khi = k / SQRT_BASE | 0;
 | 
						|
 | 
						|
      for (x = x.slice(); i--;) {
 | 
						|
        xlo = x[i] % SQRT_BASE;
 | 
						|
        xhi = x[i] / SQRT_BASE | 0;
 | 
						|
        m = khi * xlo + xhi * klo;
 | 
						|
        temp = klo * xlo + ((m % SQRT_BASE) * SQRT_BASE) + carry;
 | 
						|
        carry = (temp / base | 0) + (m / SQRT_BASE | 0) + khi * xhi;
 | 
						|
        x[i] = temp % base;
 | 
						|
      }
 | 
						|
 | 
						|
      if (carry) x = [carry].concat(x);
 | 
						|
 | 
						|
      return x;
 | 
						|
    }
 | 
						|
 | 
						|
    function compare(a, b, aL, bL) {
 | 
						|
      var i, cmp;
 | 
						|
 | 
						|
      if (aL != bL) {
 | 
						|
        cmp = aL > bL ? 1 : -1;
 | 
						|
      } else {
 | 
						|
 | 
						|
        for (i = cmp = 0; i < aL; i++) {
 | 
						|
 | 
						|
          if (a[i] != b[i]) {
 | 
						|
            cmp = a[i] > b[i] ? 1 : -1;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      return cmp;
 | 
						|
    }
 | 
						|
 | 
						|
    function subtract(a, b, aL, base) {
 | 
						|
      var i = 0;
 | 
						|
 | 
						|
      // Subtract b from a.
 | 
						|
      for (; aL--;) {
 | 
						|
        a[aL] -= i;
 | 
						|
        i = a[aL] < b[aL] ? 1 : 0;
 | 
						|
        a[aL] = i * base + a[aL] - b[aL];
 | 
						|
      }
 | 
						|
 | 
						|
      // Remove leading zeros.
 | 
						|
      for (; !a[0] && a.length > 1; a.splice(0, 1));
 | 
						|
    }
 | 
						|
 | 
						|
    // x: dividend, y: divisor.
 | 
						|
    return function (x, y, dp, rm, base) {
 | 
						|
      var cmp, e, i, more, n, prod, prodL, q, qc, rem, remL, rem0, xi, xL, yc0,
 | 
						|
        yL, yz,
 | 
						|
        s = x.s == y.s ? 1 : -1,
 | 
						|
        xc = x.c,
 | 
						|
        yc = y.c;
 | 
						|
 | 
						|
      // Either NaN, Infinity or 0?
 | 
						|
      if (!xc || !xc[0] || !yc || !yc[0]) {
 | 
						|
 | 
						|
        return new BigNumber(
 | 
						|
 | 
						|
         // Return NaN if either NaN, or both Infinity or 0.
 | 
						|
         !x.s || !y.s || (xc ? yc && xc[0] == yc[0] : !yc) ? NaN :
 | 
						|
 | 
						|
          // Return ±0 if x is ±0 or y is ±Infinity, or return ±Infinity as y is ±0.
 | 
						|
          xc && xc[0] == 0 || !yc ? s * 0 : s / 0
 | 
						|
       );
 | 
						|
      }
 | 
						|
 | 
						|
      q = new BigNumber(s);
 | 
						|
      qc = q.c = [];
 | 
						|
      e = x.e - y.e;
 | 
						|
      s = dp + e + 1;
 | 
						|
 | 
						|
      if (!base) {
 | 
						|
        base = BASE;
 | 
						|
        e = bitFloor(x.e / LOG_BASE) - bitFloor(y.e / LOG_BASE);
 | 
						|
        s = s / LOG_BASE | 0;
 | 
						|
      }
 | 
						|
 | 
						|
      // Result exponent may be one less then the current value of e.
 | 
						|
      // The coefficients of the BigNumbers from convertBase may have trailing zeros.
 | 
						|
      for (i = 0; yc[i] == (xc[i] || 0); i++);
 | 
						|
 | 
						|
      if (yc[i] > (xc[i] || 0)) e--;
 | 
						|
 | 
						|
      if (s < 0) {
 | 
						|
        qc.push(1);
 | 
						|
        more = true;
 | 
						|
      } else {
 | 
						|
        xL = xc.length;
 | 
						|
        yL = yc.length;
 | 
						|
        i = 0;
 | 
						|
        s += 2;
 | 
						|
 | 
						|
        // Normalise xc and yc so highest order digit of yc is >= base / 2.
 | 
						|
 | 
						|
        n = mathfloor(base / (yc[0] + 1));
 | 
						|
 | 
						|
        // Not necessary, but to handle odd bases where yc[0] == (base / 2) - 1.
 | 
						|
        // if (n > 1 || n++ == 1 && yc[0] < base / 2) {
 | 
						|
        if (n > 1) {
 | 
						|
          yc = multiply(yc, n, base);
 | 
						|
          xc = multiply(xc, n, base);
 | 
						|
          yL = yc.length;
 | 
						|
          xL = xc.length;
 | 
						|
        }
 | 
						|
 | 
						|
        xi = yL;
 | 
						|
        rem = xc.slice(0, yL);
 | 
						|
        remL = rem.length;
 | 
						|
 | 
						|
        // Add zeros to make remainder as long as divisor.
 | 
						|
        for (; remL < yL; rem[remL++] = 0);
 | 
						|
        yz = yc.slice();
 | 
						|
        yz = [0].concat(yz);
 | 
						|
        yc0 = yc[0];
 | 
						|
        if (yc[1] >= base / 2) yc0++;
 | 
						|
        // Not necessary, but to prevent trial digit n > base, when using base 3.
 | 
						|
        // else if (base == 3 && yc0 == 1) yc0 = 1 + 1e-15;
 | 
						|
 | 
						|
        do {
 | 
						|
          n = 0;
 | 
						|
 | 
						|
          // Compare divisor and remainder.
 | 
						|
          cmp = compare(yc, rem, yL, remL);
 | 
						|
 | 
						|
          // If divisor < remainder.
 | 
						|
          if (cmp < 0) {
 | 
						|
 | 
						|
            // Calculate trial digit, n.
 | 
						|
 | 
						|
            rem0 = rem[0];
 | 
						|
            if (yL != remL) rem0 = rem0 * base + (rem[1] || 0);
 | 
						|
 | 
						|
            // n is how many times the divisor goes into the current remainder.
 | 
						|
            n = mathfloor(rem0 / yc0);
 | 
						|
 | 
						|
            //  Algorithm:
 | 
						|
            //  product = divisor multiplied by trial digit (n).
 | 
						|
            //  Compare product and remainder.
 | 
						|
            //  If product is greater than remainder:
 | 
						|
            //    Subtract divisor from product, decrement trial digit.
 | 
						|
            //  Subtract product from remainder.
 | 
						|
            //  If product was less than remainder at the last compare:
 | 
						|
            //    Compare new remainder and divisor.
 | 
						|
            //    If remainder is greater than divisor:
 | 
						|
            //      Subtract divisor from remainder, increment trial digit.
 | 
						|
 | 
						|
            if (n > 1) {
 | 
						|
 | 
						|
              // n may be > base only when base is 3.
 | 
						|
              if (n >= base) n = base - 1;
 | 
						|
 | 
						|
              // product = divisor * trial digit.
 | 
						|
              prod = multiply(yc, n, base);
 | 
						|
              prodL = prod.length;
 | 
						|
              remL = rem.length;
 | 
						|
 | 
						|
              // Compare product and remainder.
 | 
						|
              // If product > remainder then trial digit n too high.
 | 
						|
              // n is 1 too high about 5% of the time, and is not known to have
 | 
						|
              // ever been more than 1 too high.
 | 
						|
              while (compare(prod, rem, prodL, remL) == 1) {
 | 
						|
                n--;
 | 
						|
 | 
						|
                // Subtract divisor from product.
 | 
						|
                subtract(prod, yL < prodL ? yz : yc, prodL, base);
 | 
						|
                prodL = prod.length;
 | 
						|
                cmp = 1;
 | 
						|
              }
 | 
						|
            } else {
 | 
						|
 | 
						|
              // n is 0 or 1, cmp is -1.
 | 
						|
              // If n is 0, there is no need to compare yc and rem again below,
 | 
						|
              // so change cmp to 1 to avoid it.
 | 
						|
              // If n is 1, leave cmp as -1, so yc and rem are compared again.
 | 
						|
              if (n == 0) {
 | 
						|
 | 
						|
                // divisor < remainder, so n must be at least 1.
 | 
						|
                cmp = n = 1;
 | 
						|
              }
 | 
						|
 | 
						|
              // product = divisor
 | 
						|
              prod = yc.slice();
 | 
						|
              prodL = prod.length;
 | 
						|
            }
 | 
						|
 | 
						|
            if (prodL < remL) prod = [0].concat(prod);
 | 
						|
 | 
						|
            // Subtract product from remainder.
 | 
						|
            subtract(rem, prod, remL, base);
 | 
						|
            remL = rem.length;
 | 
						|
 | 
						|
             // If product was < remainder.
 | 
						|
            if (cmp == -1) {
 | 
						|
 | 
						|
              // Compare divisor and new remainder.
 | 
						|
              // If divisor < new remainder, subtract divisor from remainder.
 | 
						|
              // Trial digit n too low.
 | 
						|
              // n is 1 too low about 5% of the time, and very rarely 2 too low.
 | 
						|
              while (compare(yc, rem, yL, remL) < 1) {
 | 
						|
                n++;
 | 
						|
 | 
						|
                // Subtract divisor from remainder.
 | 
						|
                subtract(rem, yL < remL ? yz : yc, remL, base);
 | 
						|
                remL = rem.length;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          } else if (cmp === 0) {
 | 
						|
            n++;
 | 
						|
            rem = [0];
 | 
						|
          } // else cmp === 1 and n will be 0
 | 
						|
 | 
						|
          // Add the next digit, n, to the result array.
 | 
						|
          qc[i++] = n;
 | 
						|
 | 
						|
          // Update the remainder.
 | 
						|
          if (rem[0]) {
 | 
						|
            rem[remL++] = xc[xi] || 0;
 | 
						|
          } else {
 | 
						|
            rem = [xc[xi]];
 | 
						|
            remL = 1;
 | 
						|
          }
 | 
						|
        } while ((xi++ < xL || rem[0] != null) && s--);
 | 
						|
 | 
						|
        more = rem[0] != null;
 | 
						|
 | 
						|
        // Leading zero?
 | 
						|
        if (!qc[0]) qc.splice(0, 1);
 | 
						|
      }
 | 
						|
 | 
						|
      if (base == BASE) {
 | 
						|
 | 
						|
        // To calculate q.e, first get the number of digits of qc[0].
 | 
						|
        for (i = 1, s = qc[0]; s >= 10; s /= 10, i++);
 | 
						|
 | 
						|
        round(q, dp + (q.e = i + e * LOG_BASE - 1) + 1, rm, more);
 | 
						|
 | 
						|
      // Caller is convertBase.
 | 
						|
      } else {
 | 
						|
        q.e = e;
 | 
						|
        q.r = +more;
 | 
						|
      }
 | 
						|
 | 
						|
      return q;
 | 
						|
    };
 | 
						|
  })();
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return a string representing the value of BigNumber n in fixed-point or exponential
 | 
						|
   * notation rounded to the specified decimal places or significant digits.
 | 
						|
   *
 | 
						|
   * n: a BigNumber.
 | 
						|
   * i: the index of the last digit required (i.e. the digit that may be rounded up).
 | 
						|
   * rm: the rounding mode.
 | 
						|
   * id: 1 (toExponential) or 2 (toPrecision).
 | 
						|
   */
 | 
						|
  function format(n, i, rm, id) {
 | 
						|
    var c0, e, ne, len, str;
 | 
						|
 | 
						|
    if (rm == null) rm = ROUNDING_MODE;
 | 
						|
    else intCheck(rm, 0, 8);
 | 
						|
 | 
						|
    if (!n.c) return n.toString();
 | 
						|
 | 
						|
    c0 = n.c[0];
 | 
						|
    ne = n.e;
 | 
						|
 | 
						|
    if (i == null) {
 | 
						|
      str = coeffToString(n.c);
 | 
						|
      str = id == 1 || id == 2 && (ne <= TO_EXP_NEG || ne >= TO_EXP_POS)
 | 
						|
       ? toExponential(str, ne)
 | 
						|
       : toFixedPoint(str, ne, '0');
 | 
						|
    } else {
 | 
						|
      n = round(new BigNumber(n), i, rm);
 | 
						|
 | 
						|
      // n.e may have changed if the value was rounded up.
 | 
						|
      e = n.e;
 | 
						|
 | 
						|
      str = coeffToString(n.c);
 | 
						|
      len = str.length;
 | 
						|
 | 
						|
      // toPrecision returns exponential notation if the number of significant digits
 | 
						|
      // specified is less than the number of digits necessary to represent the integer
 | 
						|
      // part of the value in fixed-point notation.
 | 
						|
 | 
						|
      // Exponential notation.
 | 
						|
      if (id == 1 || id == 2 && (i <= e || e <= TO_EXP_NEG)) {
 | 
						|
 | 
						|
        // Append zeros?
 | 
						|
        for (; len < i; str += '0', len++);
 | 
						|
        str = toExponential(str, e);
 | 
						|
 | 
						|
      // Fixed-point notation.
 | 
						|
      } else {
 | 
						|
        i -= ne;
 | 
						|
        str = toFixedPoint(str, e, '0');
 | 
						|
 | 
						|
        // Append zeros?
 | 
						|
        if (e + 1 > len) {
 | 
						|
          if (--i > 0) for (str += '.'; i--; str += '0');
 | 
						|
        } else {
 | 
						|
          i += e - len;
 | 
						|
          if (i > 0) {
 | 
						|
            if (e + 1 == len) str += '.';
 | 
						|
            for (; i--; str += '0');
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return n.s < 0 && c0 ? '-' + str : str;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // Handle BigNumber.max and BigNumber.min.
 | 
						|
  // If any number is NaN, return NaN.
 | 
						|
  function maxOrMin(args, n) {
 | 
						|
    var k, y,
 | 
						|
      i = 1,
 | 
						|
      x = new BigNumber(args[0]);
 | 
						|
 | 
						|
    for (; i < args.length; i++) {
 | 
						|
      y = new BigNumber(args[i]);
 | 
						|
      if (!y.s || (k = compare(x, y)) === n || k === 0 && x.s === n) {
 | 
						|
        x = y;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return x;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Strip trailing zeros, calculate base 10 exponent and check against MIN_EXP and MAX_EXP.
 | 
						|
   * Called by minus, plus and times.
 | 
						|
   */
 | 
						|
  function normalise(n, c, e) {
 | 
						|
    var i = 1,
 | 
						|
      j = c.length;
 | 
						|
 | 
						|
     // Remove trailing zeros.
 | 
						|
    for (; !c[--j]; c.pop());
 | 
						|
 | 
						|
    // Calculate the base 10 exponent. First get the number of digits of c[0].
 | 
						|
    for (j = c[0]; j >= 10; j /= 10, i++);
 | 
						|
 | 
						|
    // Overflow?
 | 
						|
    if ((e = i + e * LOG_BASE - 1) > MAX_EXP) {
 | 
						|
 | 
						|
      // Infinity.
 | 
						|
      n.c = n.e = null;
 | 
						|
 | 
						|
    // Underflow?
 | 
						|
    } else if (e < MIN_EXP) {
 | 
						|
 | 
						|
      // Zero.
 | 
						|
      n.c = [n.e = 0];
 | 
						|
    } else {
 | 
						|
      n.e = e;
 | 
						|
      n.c = c;
 | 
						|
    }
 | 
						|
 | 
						|
    return n;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // Handle values that fail the validity test in BigNumber.
 | 
						|
  parseNumeric = (function () {
 | 
						|
    var basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i,
 | 
						|
      dotAfter = /^([^.]+)\.$/,
 | 
						|
      dotBefore = /^\.([^.]+)$/,
 | 
						|
      isInfinityOrNaN = /^-?(Infinity|NaN)$/,
 | 
						|
      whitespaceOrPlus = /^\s*\+(?=[\w.])|^\s+|\s+$/g;
 | 
						|
 | 
						|
    return function (x, str, isNum, b) {
 | 
						|
      var base,
 | 
						|
        s = isNum ? str : str.replace(whitespaceOrPlus, '');
 | 
						|
 | 
						|
      // No exception on ±Infinity or NaN.
 | 
						|
      if (isInfinityOrNaN.test(s)) {
 | 
						|
        x.s = isNaN(s) ? null : s < 0 ? -1 : 1;
 | 
						|
      } else {
 | 
						|
        if (!isNum) {
 | 
						|
 | 
						|
          // basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i
 | 
						|
          s = s.replace(basePrefix, function (m, p1, p2) {
 | 
						|
            base = (p2 = p2.toLowerCase()) == 'x' ? 16 : p2 == 'b' ? 2 : 8;
 | 
						|
            return !b || b == base ? p1 : m;
 | 
						|
          });
 | 
						|
 | 
						|
          if (b) {
 | 
						|
            base = b;
 | 
						|
 | 
						|
            // E.g. '1.' to '1', '.1' to '0.1'
 | 
						|
            s = s.replace(dotAfter, '$1').replace(dotBefore, '0.$1');
 | 
						|
          }
 | 
						|
 | 
						|
          if (str != s) return new BigNumber(s, base);
 | 
						|
        }
 | 
						|
 | 
						|
        // '[BigNumber Error] Not a number: {n}'
 | 
						|
        // '[BigNumber Error] Not a base {b} number: {n}'
 | 
						|
        if (BigNumber.DEBUG) {
 | 
						|
          throw Error
 | 
						|
            (bignumberError + 'Not a' + (b ? ' base ' + b : '') + ' number: ' + str);
 | 
						|
        }
 | 
						|
 | 
						|
        // NaN
 | 
						|
        x.s = null;
 | 
						|
      }
 | 
						|
 | 
						|
      x.c = x.e = null;
 | 
						|
    }
 | 
						|
  })();
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Round x to sd significant digits using rounding mode rm. Check for over/under-flow.
 | 
						|
   * If r is truthy, it is known that there are more digits after the rounding digit.
 | 
						|
   */
 | 
						|
  function round(x, sd, rm, r) {
 | 
						|
    var d, i, j, k, n, ni, rd,
 | 
						|
      xc = x.c,
 | 
						|
      pows10 = POWS_TEN;
 | 
						|
 | 
						|
    // if x is not Infinity or NaN...
 | 
						|
    if (xc) {
 | 
						|
 | 
						|
      // rd is the rounding digit, i.e. the digit after the digit that may be rounded up.
 | 
						|
      // n is a base 1e14 number, the value of the element of array x.c containing rd.
 | 
						|
      // ni is the index of n within x.c.
 | 
						|
      // d is the number of digits of n.
 | 
						|
      // i is the index of rd within n including leading zeros.
 | 
						|
      // j is the actual index of rd within n (if < 0, rd is a leading zero).
 | 
						|
      out: {
 | 
						|
 | 
						|
        // Get the number of digits of the first element of xc.
 | 
						|
        for (d = 1, k = xc[0]; k >= 10; k /= 10, d++);
 | 
						|
        i = sd - d;
 | 
						|
 | 
						|
        // If the rounding digit is in the first element of xc...
 | 
						|
        if (i < 0) {
 | 
						|
          i += LOG_BASE;
 | 
						|
          j = sd;
 | 
						|
          n = xc[ni = 0];
 | 
						|
 | 
						|
          // Get the rounding digit at index j of n.
 | 
						|
          rd = mathfloor(n / pows10[d - j - 1] % 10);
 | 
						|
        } else {
 | 
						|
          ni = mathceil((i + 1) / LOG_BASE);
 | 
						|
 | 
						|
          if (ni >= xc.length) {
 | 
						|
 | 
						|
            if (r) {
 | 
						|
 | 
						|
              // Needed by sqrt.
 | 
						|
              for (; xc.length <= ni; xc.push(0));
 | 
						|
              n = rd = 0;
 | 
						|
              d = 1;
 | 
						|
              i %= LOG_BASE;
 | 
						|
              j = i - LOG_BASE + 1;
 | 
						|
            } else {
 | 
						|
              break out;
 | 
						|
            }
 | 
						|
          } else {
 | 
						|
            n = k = xc[ni];
 | 
						|
 | 
						|
            // Get the number of digits of n.
 | 
						|
            for (d = 1; k >= 10; k /= 10, d++);
 | 
						|
 | 
						|
            // Get the index of rd within n.
 | 
						|
            i %= LOG_BASE;
 | 
						|
 | 
						|
            // Get the index of rd within n, adjusted for leading zeros.
 | 
						|
            // The number of leading zeros of n is given by LOG_BASE - d.
 | 
						|
            j = i - LOG_BASE + d;
 | 
						|
 | 
						|
            // Get the rounding digit at index j of n.
 | 
						|
            rd = j < 0 ? 0 : mathfloor(n / pows10[d - j - 1] % 10);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        r = r || sd < 0 ||
 | 
						|
 | 
						|
        // Are there any non-zero digits after the rounding digit?
 | 
						|
        // The expression  n % pows10[d - j - 1]  returns all digits of n to the right
 | 
						|
        // of the digit at j, e.g. if n is 908714 and j is 2, the expression gives 714.
 | 
						|
         xc[ni + 1] != null || (j < 0 ? n : n % pows10[d - j - 1]);
 | 
						|
 | 
						|
        r = rm < 4
 | 
						|
         ? (rd || r) && (rm == 0 || rm == (x.s < 0 ? 3 : 2))
 | 
						|
         : rd > 5 || rd == 5 && (rm == 4 || r || rm == 6 &&
 | 
						|
 | 
						|
          // Check whether the digit to the left of the rounding digit is odd.
 | 
						|
          ((i > 0 ? j > 0 ? n / pows10[d - j] : 0 : xc[ni - 1]) % 10) & 1 ||
 | 
						|
           rm == (x.s < 0 ? 8 : 7));
 | 
						|
 | 
						|
        if (sd < 1 || !xc[0]) {
 | 
						|
          xc.length = 0;
 | 
						|
 | 
						|
          if (r) {
 | 
						|
 | 
						|
            // Convert sd to decimal places.
 | 
						|
            sd -= x.e + 1;
 | 
						|
 | 
						|
            // 1, 0.1, 0.01, 0.001, 0.0001 etc.
 | 
						|
            xc[0] = pows10[(LOG_BASE - sd % LOG_BASE) % LOG_BASE];
 | 
						|
            x.e = -sd || 0;
 | 
						|
          } else {
 | 
						|
 | 
						|
            // Zero.
 | 
						|
            xc[0] = x.e = 0;
 | 
						|
          }
 | 
						|
 | 
						|
          return x;
 | 
						|
        }
 | 
						|
 | 
						|
        // Remove excess digits.
 | 
						|
        if (i == 0) {
 | 
						|
          xc.length = ni;
 | 
						|
          k = 1;
 | 
						|
          ni--;
 | 
						|
        } else {
 | 
						|
          xc.length = ni + 1;
 | 
						|
          k = pows10[LOG_BASE - i];
 | 
						|
 | 
						|
          // E.g. 56700 becomes 56000 if 7 is the rounding digit.
 | 
						|
          // j > 0 means i > number of leading zeros of n.
 | 
						|
          xc[ni] = j > 0 ? mathfloor(n / pows10[d - j] % pows10[j]) * k : 0;
 | 
						|
        }
 | 
						|
 | 
						|
        // Round up?
 | 
						|
        if (r) {
 | 
						|
 | 
						|
          for (; ;) {
 | 
						|
 | 
						|
            // If the digit to be rounded up is in the first element of xc...
 | 
						|
            if (ni == 0) {
 | 
						|
 | 
						|
              // i will be the length of xc[0] before k is added.
 | 
						|
              for (i = 1, j = xc[0]; j >= 10; j /= 10, i++);
 | 
						|
              j = xc[0] += k;
 | 
						|
              for (k = 1; j >= 10; j /= 10, k++);
 | 
						|
 | 
						|
              // if i != k the length has increased.
 | 
						|
              if (i != k) {
 | 
						|
                x.e++;
 | 
						|
                if (xc[0] == BASE) xc[0] = 1;
 | 
						|
              }
 | 
						|
 | 
						|
              break;
 | 
						|
            } else {
 | 
						|
              xc[ni] += k;
 | 
						|
              if (xc[ni] != BASE) break;
 | 
						|
              xc[ni--] = 0;
 | 
						|
              k = 1;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Remove trailing zeros.
 | 
						|
        for (i = xc.length; xc[--i] === 0; xc.pop());
 | 
						|
      }
 | 
						|
 | 
						|
      // Overflow? Infinity.
 | 
						|
      if (x.e > MAX_EXP) {
 | 
						|
        x.c = x.e = null;
 | 
						|
 | 
						|
      // Underflow? Zero.
 | 
						|
      } else if (x.e < MIN_EXP) {
 | 
						|
        x.c = [x.e = 0];
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return x;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  function valueOf(n) {
 | 
						|
    var str,
 | 
						|
      e = n.e;
 | 
						|
 | 
						|
    if (e === null) return n.toString();
 | 
						|
 | 
						|
    str = coeffToString(n.c);
 | 
						|
 | 
						|
    str = e <= TO_EXP_NEG || e >= TO_EXP_POS
 | 
						|
      ? toExponential(str, e)
 | 
						|
      : toFixedPoint(str, e, '0');
 | 
						|
 | 
						|
    return n.s < 0 ? '-' + str : str;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // PROTOTYPE/INSTANCE METHODS
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return a new BigNumber whose value is the absolute value of this BigNumber.
 | 
						|
   */
 | 
						|
  P.absoluteValue = P.abs = function () {
 | 
						|
    var x = new BigNumber(this);
 | 
						|
    if (x.s < 0) x.s = 1;
 | 
						|
    return x;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return
 | 
						|
   *   1 if the value of this BigNumber is greater than the value of BigNumber(y, b),
 | 
						|
   *   -1 if the value of this BigNumber is less than the value of BigNumber(y, b),
 | 
						|
   *   0 if they have the same value,
 | 
						|
   *   or null if the value of either is NaN.
 | 
						|
   */
 | 
						|
  P.comparedTo = function (y, b) {
 | 
						|
    return compare(this, new BigNumber(y, b));
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * If dp is undefined or null or true or false, return the number of decimal places of the
 | 
						|
   * value of this BigNumber, or null if the value of this BigNumber is ±Infinity or NaN.
 | 
						|
   *
 | 
						|
   * Otherwise, if dp is a number, return a new BigNumber whose value is the value of this
 | 
						|
   * BigNumber rounded to a maximum of dp decimal places using rounding mode rm, or
 | 
						|
   * ROUNDING_MODE if rm is omitted.
 | 
						|
   *
 | 
						|
   * [dp] {number} Decimal places: integer, 0 to MAX inclusive.
 | 
						|
   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | 
						|
   *
 | 
						|
   * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
 | 
						|
   */
 | 
						|
  P.decimalPlaces = P.dp = function (dp, rm) {
 | 
						|
    var c, n, v,
 | 
						|
      x = this;
 | 
						|
 | 
						|
    if (dp != null) {
 | 
						|
      intCheck(dp, 0, MAX);
 | 
						|
      if (rm == null) rm = ROUNDING_MODE;
 | 
						|
      else intCheck(rm, 0, 8);
 | 
						|
 | 
						|
      return round(new BigNumber(x), dp + x.e + 1, rm);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!(c = x.c)) return null;
 | 
						|
    n = ((v = c.length - 1) - bitFloor(this.e / LOG_BASE)) * LOG_BASE;
 | 
						|
 | 
						|
    // Subtract the number of trailing zeros of the last number.
 | 
						|
    if (v = c[v]) for (; v % 10 == 0; v /= 10, n--);
 | 
						|
    if (n < 0) n = 0;
 | 
						|
 | 
						|
    return n;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   *  n / 0 = I
 | 
						|
   *  n / N = N
 | 
						|
   *  n / I = 0
 | 
						|
   *  0 / n = 0
 | 
						|
   *  0 / 0 = N
 | 
						|
   *  0 / N = N
 | 
						|
   *  0 / I = 0
 | 
						|
   *  N / n = N
 | 
						|
   *  N / 0 = N
 | 
						|
   *  N / N = N
 | 
						|
   *  N / I = N
 | 
						|
   *  I / n = I
 | 
						|
   *  I / 0 = I
 | 
						|
   *  I / N = N
 | 
						|
   *  I / I = N
 | 
						|
   *
 | 
						|
   * Return a new BigNumber whose value is the value of this BigNumber divided by the value of
 | 
						|
   * BigNumber(y, b), rounded according to DECIMAL_PLACES and ROUNDING_MODE.
 | 
						|
   */
 | 
						|
  P.dividedBy = P.div = function (y, b) {
 | 
						|
    return div(this, new BigNumber(y, b), DECIMAL_PLACES, ROUNDING_MODE);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return a new BigNumber whose value is the integer part of dividing the value of this
 | 
						|
   * BigNumber by the value of BigNumber(y, b).
 | 
						|
   */
 | 
						|
  P.dividedToIntegerBy = P.idiv = function (y, b) {
 | 
						|
    return div(this, new BigNumber(y, b), 0, 1);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return a BigNumber whose value is the value of this BigNumber exponentiated by n.
 | 
						|
   *
 | 
						|
   * If m is present, return the result modulo m.
 | 
						|
   * If n is negative round according to DECIMAL_PLACES and ROUNDING_MODE.
 | 
						|
   * If POW_PRECISION is non-zero and m is not present, round to POW_PRECISION using ROUNDING_MODE.
 | 
						|
   *
 | 
						|
   * The modular power operation works efficiently when x, n, and m are integers, otherwise it
 | 
						|
   * is equivalent to calculating x.exponentiatedBy(n).modulo(m) with a POW_PRECISION of 0.
 | 
						|
   *
 | 
						|
   * n {number|string|BigNumber} The exponent. An integer.
 | 
						|
   * [m] {number|string|BigNumber} The modulus.
 | 
						|
   *
 | 
						|
   * '[BigNumber Error] Exponent not an integer: {n}'
 | 
						|
   */
 | 
						|
  P.exponentiatedBy = P.pow = function (n, m) {
 | 
						|
    var half, isModExp, i, k, more, nIsBig, nIsNeg, nIsOdd, y,
 | 
						|
      x = this;
 | 
						|
 | 
						|
    n = new BigNumber(n);
 | 
						|
 | 
						|
    // Allow NaN and ±Infinity, but not other non-integers.
 | 
						|
    if (n.c && !n.isInteger()) {
 | 
						|
      throw Error
 | 
						|
        (bignumberError + 'Exponent not an integer: ' + valueOf(n));
 | 
						|
    }
 | 
						|
 | 
						|
    if (m != null) m = new BigNumber(m);
 | 
						|
 | 
						|
    // Exponent of MAX_SAFE_INTEGER is 15.
 | 
						|
    nIsBig = n.e > 14;
 | 
						|
 | 
						|
    // If x is NaN, ±Infinity, ±0 or ±1, or n is ±Infinity, NaN or ±0.
 | 
						|
    if (!x.c || !x.c[0] || x.c[0] == 1 && !x.e && x.c.length == 1 || !n.c || !n.c[0]) {
 | 
						|
 | 
						|
      // The sign of the result of pow when x is negative depends on the evenness of n.
 | 
						|
      // If +n overflows to ±Infinity, the evenness of n would be not be known.
 | 
						|
      y = new BigNumber(Math.pow(+valueOf(x), nIsBig ? n.s * (2 - isOdd(n)) : +valueOf(n)));
 | 
						|
      return m ? y.mod(m) : y;
 | 
						|
    }
 | 
						|
 | 
						|
    nIsNeg = n.s < 0;
 | 
						|
 | 
						|
    if (m) {
 | 
						|
 | 
						|
      // x % m returns NaN if abs(m) is zero, or m is NaN.
 | 
						|
      if (m.c ? !m.c[0] : !m.s) return new BigNumber(NaN);
 | 
						|
 | 
						|
      isModExp = !nIsNeg && x.isInteger() && m.isInteger();
 | 
						|
 | 
						|
      if (isModExp) x = x.mod(m);
 | 
						|
 | 
						|
    // Overflow to ±Infinity: >=2**1e10 or >=1.0000024**1e15.
 | 
						|
    // Underflow to ±0: <=0.79**1e10 or <=0.9999975**1e15.
 | 
						|
    } else if (n.e > 9 && (x.e > 0 || x.e < -1 || (x.e == 0
 | 
						|
      // [1, 240000000]
 | 
						|
      ? x.c[0] > 1 || nIsBig && x.c[1] >= 24e7
 | 
						|
      // [80000000000000]  [99999750000000]
 | 
						|
      : x.c[0] < 8e13 || nIsBig && x.c[0] <= 9999975e7))) {
 | 
						|
 | 
						|
      // If x is negative and n is odd, k = -0, else k = 0.
 | 
						|
      k = x.s < 0 && isOdd(n) ? -0 : 0;
 | 
						|
 | 
						|
      // If x >= 1, k = ±Infinity.
 | 
						|
      if (x.e > -1) k = 1 / k;
 | 
						|
 | 
						|
      // If n is negative return ±0, else return ±Infinity.
 | 
						|
      return new BigNumber(nIsNeg ? 1 / k : k);
 | 
						|
 | 
						|
    } else if (POW_PRECISION) {
 | 
						|
 | 
						|
      // Truncating each coefficient array to a length of k after each multiplication
 | 
						|
      // equates to truncating significant digits to POW_PRECISION + [28, 41],
 | 
						|
      // i.e. there will be a minimum of 28 guard digits retained.
 | 
						|
      k = mathceil(POW_PRECISION / LOG_BASE + 2);
 | 
						|
    }
 | 
						|
 | 
						|
    if (nIsBig) {
 | 
						|
      half = new BigNumber(0.5);
 | 
						|
      if (nIsNeg) n.s = 1;
 | 
						|
      nIsOdd = isOdd(n);
 | 
						|
    } else {
 | 
						|
      i = Math.abs(+valueOf(n));
 | 
						|
      nIsOdd = i % 2;
 | 
						|
    }
 | 
						|
 | 
						|
    y = new BigNumber(ONE);
 | 
						|
 | 
						|
    // Performs 54 loop iterations for n of 9007199254740991.
 | 
						|
    for (; ;) {
 | 
						|
 | 
						|
      if (nIsOdd) {
 | 
						|
        y = y.times(x);
 | 
						|
        if (!y.c) break;
 | 
						|
 | 
						|
        if (k) {
 | 
						|
          if (y.c.length > k) y.c.length = k;
 | 
						|
        } else if (isModExp) {
 | 
						|
          y = y.mod(m);    //y = y.minus(div(y, m, 0, MODULO_MODE).times(m));
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (i) {
 | 
						|
        i = mathfloor(i / 2);
 | 
						|
        if (i === 0) break;
 | 
						|
        nIsOdd = i % 2;
 | 
						|
      } else {
 | 
						|
        n = n.times(half);
 | 
						|
        round(n, n.e + 1, 1);
 | 
						|
 | 
						|
        if (n.e > 14) {
 | 
						|
          nIsOdd = isOdd(n);
 | 
						|
        } else {
 | 
						|
          i = +valueOf(n);
 | 
						|
          if (i === 0) break;
 | 
						|
          nIsOdd = i % 2;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      x = x.times(x);
 | 
						|
 | 
						|
      if (k) {
 | 
						|
        if (x.c && x.c.length > k) x.c.length = k;
 | 
						|
      } else if (isModExp) {
 | 
						|
        x = x.mod(m);    //x = x.minus(div(x, m, 0, MODULO_MODE).times(m));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (isModExp) return y;
 | 
						|
    if (nIsNeg) y = ONE.div(y);
 | 
						|
 | 
						|
    return m ? y.mod(m) : k ? round(y, POW_PRECISION, ROUNDING_MODE, more) : y;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return a new BigNumber whose value is the value of this BigNumber rounded to an integer
 | 
						|
   * using rounding mode rm, or ROUNDING_MODE if rm is omitted.
 | 
						|
   *
 | 
						|
   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | 
						|
   *
 | 
						|
   * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {rm}'
 | 
						|
   */
 | 
						|
  P.integerValue = function (rm) {
 | 
						|
    var n = new BigNumber(this);
 | 
						|
    if (rm == null) rm = ROUNDING_MODE;
 | 
						|
    else intCheck(rm, 0, 8);
 | 
						|
    return round(n, n.e + 1, rm);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return true if the value of this BigNumber is equal to the value of BigNumber(y, b),
 | 
						|
   * otherwise return false.
 | 
						|
   */
 | 
						|
  P.isEqualTo = P.eq = function (y, b) {
 | 
						|
    return compare(this, new BigNumber(y, b)) === 0;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return true if the value of this BigNumber is a finite number, otherwise return false.
 | 
						|
   */
 | 
						|
  P.isFinite = function () {
 | 
						|
    return !!this.c;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return true if the value of this BigNumber is greater than the value of BigNumber(y, b),
 | 
						|
   * otherwise return false.
 | 
						|
   */
 | 
						|
  P.isGreaterThan = P.gt = function (y, b) {
 | 
						|
    return compare(this, new BigNumber(y, b)) > 0;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return true if the value of this BigNumber is greater than or equal to the value of
 | 
						|
   * BigNumber(y, b), otherwise return false.
 | 
						|
   */
 | 
						|
  P.isGreaterThanOrEqualTo = P.gte = function (y, b) {
 | 
						|
    return (b = compare(this, new BigNumber(y, b))) === 1 || b === 0;
 | 
						|
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return true if the value of this BigNumber is an integer, otherwise return false.
 | 
						|
   */
 | 
						|
  P.isInteger = function () {
 | 
						|
    return !!this.c && bitFloor(this.e / LOG_BASE) > this.c.length - 2;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return true if the value of this BigNumber is less than the value of BigNumber(y, b),
 | 
						|
   * otherwise return false.
 | 
						|
   */
 | 
						|
  P.isLessThan = P.lt = function (y, b) {
 | 
						|
    return compare(this, new BigNumber(y, b)) < 0;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return true if the value of this BigNumber is less than or equal to the value of
 | 
						|
   * BigNumber(y, b), otherwise return false.
 | 
						|
   */
 | 
						|
  P.isLessThanOrEqualTo = P.lte = function (y, b) {
 | 
						|
    return (b = compare(this, new BigNumber(y, b))) === -1 || b === 0;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return true if the value of this BigNumber is NaN, otherwise return false.
 | 
						|
   */
 | 
						|
  P.isNaN = function () {
 | 
						|
    return !this.s;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return true if the value of this BigNumber is negative, otherwise return false.
 | 
						|
   */
 | 
						|
  P.isNegative = function () {
 | 
						|
    return this.s < 0;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return true if the value of this BigNumber is positive, otherwise return false.
 | 
						|
   */
 | 
						|
  P.isPositive = function () {
 | 
						|
    return this.s > 0;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return true if the value of this BigNumber is 0 or -0, otherwise return false.
 | 
						|
   */
 | 
						|
  P.isZero = function () {
 | 
						|
    return !!this.c && this.c[0] == 0;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   *  n - 0 = n
 | 
						|
   *  n - N = N
 | 
						|
   *  n - I = -I
 | 
						|
   *  0 - n = -n
 | 
						|
   *  0 - 0 = 0
 | 
						|
   *  0 - N = N
 | 
						|
   *  0 - I = -I
 | 
						|
   *  N - n = N
 | 
						|
   *  N - 0 = N
 | 
						|
   *  N - N = N
 | 
						|
   *  N - I = N
 | 
						|
   *  I - n = I
 | 
						|
   *  I - 0 = I
 | 
						|
   *  I - N = N
 | 
						|
   *  I - I = N
 | 
						|
   *
 | 
						|
   * Return a new BigNumber whose value is the value of this BigNumber minus the value of
 | 
						|
   * BigNumber(y, b).
 | 
						|
   */
 | 
						|
  P.minus = function (y, b) {
 | 
						|
    var i, j, t, xLTy,
 | 
						|
      x = this,
 | 
						|
      a = x.s;
 | 
						|
 | 
						|
    y = new BigNumber(y, b);
 | 
						|
    b = y.s;
 | 
						|
 | 
						|
    // Either NaN?
 | 
						|
    if (!a || !b) return new BigNumber(NaN);
 | 
						|
 | 
						|
    // Signs differ?
 | 
						|
    if (a != b) {
 | 
						|
      y.s = -b;
 | 
						|
      return x.plus(y);
 | 
						|
    }
 | 
						|
 | 
						|
    var xe = x.e / LOG_BASE,
 | 
						|
      ye = y.e / LOG_BASE,
 | 
						|
      xc = x.c,
 | 
						|
      yc = y.c;
 | 
						|
 | 
						|
    if (!xe || !ye) {
 | 
						|
 | 
						|
      // Either Infinity?
 | 
						|
      if (!xc || !yc) return xc ? (y.s = -b, y) : new BigNumber(yc ? x : NaN);
 | 
						|
 | 
						|
      // Either zero?
 | 
						|
      if (!xc[0] || !yc[0]) {
 | 
						|
 | 
						|
        // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
 | 
						|
        return yc[0] ? (y.s = -b, y) : new BigNumber(xc[0] ? x :
 | 
						|
 | 
						|
         // IEEE 754 (2008) 6.3: n - n = -0 when rounding to -Infinity
 | 
						|
         ROUNDING_MODE == 3 ? -0 : 0);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    xe = bitFloor(xe);
 | 
						|
    ye = bitFloor(ye);
 | 
						|
    xc = xc.slice();
 | 
						|
 | 
						|
    // Determine which is the bigger number.
 | 
						|
    if (a = xe - ye) {
 | 
						|
 | 
						|
      if (xLTy = a < 0) {
 | 
						|
        a = -a;
 | 
						|
        t = xc;
 | 
						|
      } else {
 | 
						|
        ye = xe;
 | 
						|
        t = yc;
 | 
						|
      }
 | 
						|
 | 
						|
      t.reverse();
 | 
						|
 | 
						|
      // Prepend zeros to equalise exponents.
 | 
						|
      for (b = a; b--; t.push(0));
 | 
						|
      t.reverse();
 | 
						|
    } else {
 | 
						|
 | 
						|
      // Exponents equal. Check digit by digit.
 | 
						|
      j = (xLTy = (a = xc.length) < (b = yc.length)) ? a : b;
 | 
						|
 | 
						|
      for (a = b = 0; b < j; b++) {
 | 
						|
 | 
						|
        if (xc[b] != yc[b]) {
 | 
						|
          xLTy = xc[b] < yc[b];
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // x < y? Point xc to the array of the bigger number.
 | 
						|
    if (xLTy) {
 | 
						|
      t = xc;
 | 
						|
      xc = yc;
 | 
						|
      yc = t;
 | 
						|
      y.s = -y.s;
 | 
						|
    }
 | 
						|
 | 
						|
    b = (j = yc.length) - (i = xc.length);
 | 
						|
 | 
						|
    // Append zeros to xc if shorter.
 | 
						|
    // No need to add zeros to yc if shorter as subtract only needs to start at yc.length.
 | 
						|
    if (b > 0) for (; b--; xc[i++] = 0);
 | 
						|
    b = BASE - 1;
 | 
						|
 | 
						|
    // Subtract yc from xc.
 | 
						|
    for (; j > a;) {
 | 
						|
 | 
						|
      if (xc[--j] < yc[j]) {
 | 
						|
        for (i = j; i && !xc[--i]; xc[i] = b);
 | 
						|
        --xc[i];
 | 
						|
        xc[j] += BASE;
 | 
						|
      }
 | 
						|
 | 
						|
      xc[j] -= yc[j];
 | 
						|
    }
 | 
						|
 | 
						|
    // Remove leading zeros and adjust exponent accordingly.
 | 
						|
    for (; xc[0] == 0; xc.splice(0, 1), --ye);
 | 
						|
 | 
						|
    // Zero?
 | 
						|
    if (!xc[0]) {
 | 
						|
 | 
						|
      // Following IEEE 754 (2008) 6.3,
 | 
						|
      // n - n = +0  but  n - n = -0  when rounding towards -Infinity.
 | 
						|
      y.s = ROUNDING_MODE == 3 ? -1 : 1;
 | 
						|
      y.c = [y.e = 0];
 | 
						|
      return y;
 | 
						|
    }
 | 
						|
 | 
						|
    // No need to check for Infinity as +x - +y != Infinity && -x - -y != Infinity
 | 
						|
    // for finite x and y.
 | 
						|
    return normalise(y, xc, ye);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   *   n % 0 =  N
 | 
						|
   *   n % N =  N
 | 
						|
   *   n % I =  n
 | 
						|
   *   0 % n =  0
 | 
						|
   *  -0 % n = -0
 | 
						|
   *   0 % 0 =  N
 | 
						|
   *   0 % N =  N
 | 
						|
   *   0 % I =  0
 | 
						|
   *   N % n =  N
 | 
						|
   *   N % 0 =  N
 | 
						|
   *   N % N =  N
 | 
						|
   *   N % I =  N
 | 
						|
   *   I % n =  N
 | 
						|
   *   I % 0 =  N
 | 
						|
   *   I % N =  N
 | 
						|
   *   I % I =  N
 | 
						|
   *
 | 
						|
   * Return a new BigNumber whose value is the value of this BigNumber modulo the value of
 | 
						|
   * BigNumber(y, b). The result depends on the value of MODULO_MODE.
 | 
						|
   */
 | 
						|
  P.modulo = P.mod = function (y, b) {
 | 
						|
    var q, s,
 | 
						|
      x = this;
 | 
						|
 | 
						|
    y = new BigNumber(y, b);
 | 
						|
 | 
						|
    // Return NaN if x is Infinity or NaN, or y is NaN or zero.
 | 
						|
    if (!x.c || !y.s || y.c && !y.c[0]) {
 | 
						|
      return new BigNumber(NaN);
 | 
						|
 | 
						|
    // Return x if y is Infinity or x is zero.
 | 
						|
    } else if (!y.c || x.c && !x.c[0]) {
 | 
						|
      return new BigNumber(x);
 | 
						|
    }
 | 
						|
 | 
						|
    if (MODULO_MODE == 9) {
 | 
						|
 | 
						|
      // Euclidian division: q = sign(y) * floor(x / abs(y))
 | 
						|
      // r = x - qy    where  0 <= r < abs(y)
 | 
						|
      s = y.s;
 | 
						|
      y.s = 1;
 | 
						|
      q = div(x, y, 0, 3);
 | 
						|
      y.s = s;
 | 
						|
      q.s *= s;
 | 
						|
    } else {
 | 
						|
      q = div(x, y, 0, MODULO_MODE);
 | 
						|
    }
 | 
						|
 | 
						|
    y = x.minus(q.times(y));
 | 
						|
 | 
						|
    // To match JavaScript %, ensure sign of zero is sign of dividend.
 | 
						|
    if (!y.c[0] && MODULO_MODE == 1) y.s = x.s;
 | 
						|
 | 
						|
    return y;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   *  n * 0 = 0
 | 
						|
   *  n * N = N
 | 
						|
   *  n * I = I
 | 
						|
   *  0 * n = 0
 | 
						|
   *  0 * 0 = 0
 | 
						|
   *  0 * N = N
 | 
						|
   *  0 * I = N
 | 
						|
   *  N * n = N
 | 
						|
   *  N * 0 = N
 | 
						|
   *  N * N = N
 | 
						|
   *  N * I = N
 | 
						|
   *  I * n = I
 | 
						|
   *  I * 0 = N
 | 
						|
   *  I * N = N
 | 
						|
   *  I * I = I
 | 
						|
   *
 | 
						|
   * Return a new BigNumber whose value is the value of this BigNumber multiplied by the value
 | 
						|
   * of BigNumber(y, b).
 | 
						|
   */
 | 
						|
  P.multipliedBy = P.times = function (y, b) {
 | 
						|
    var c, e, i, j, k, m, xcL, xlo, xhi, ycL, ylo, yhi, zc,
 | 
						|
      base, sqrtBase,
 | 
						|
      x = this,
 | 
						|
      xc = x.c,
 | 
						|
      yc = (y = new BigNumber(y, b)).c;
 | 
						|
 | 
						|
    // Either NaN, ±Infinity or ±0?
 | 
						|
    if (!xc || !yc || !xc[0] || !yc[0]) {
 | 
						|
 | 
						|
      // Return NaN if either is NaN, or one is 0 and the other is Infinity.
 | 
						|
      if (!x.s || !y.s || xc && !xc[0] && !yc || yc && !yc[0] && !xc) {
 | 
						|
        y.c = y.e = y.s = null;
 | 
						|
      } else {
 | 
						|
        y.s *= x.s;
 | 
						|
 | 
						|
        // Return ±Infinity if either is ±Infinity.
 | 
						|
        if (!xc || !yc) {
 | 
						|
          y.c = y.e = null;
 | 
						|
 | 
						|
        // Return ±0 if either is ±0.
 | 
						|
        } else {
 | 
						|
          y.c = [0];
 | 
						|
          y.e = 0;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      return y;
 | 
						|
    }
 | 
						|
 | 
						|
    e = bitFloor(x.e / LOG_BASE) + bitFloor(y.e / LOG_BASE);
 | 
						|
    y.s *= x.s;
 | 
						|
    xcL = xc.length;
 | 
						|
    ycL = yc.length;
 | 
						|
 | 
						|
    // Ensure xc points to longer array and xcL to its length.
 | 
						|
    if (xcL < ycL) {
 | 
						|
      zc = xc;
 | 
						|
      xc = yc;
 | 
						|
      yc = zc;
 | 
						|
      i = xcL;
 | 
						|
      xcL = ycL;
 | 
						|
      ycL = i;
 | 
						|
    }
 | 
						|
 | 
						|
    // Initialise the result array with zeros.
 | 
						|
    for (i = xcL + ycL, zc = []; i--; zc.push(0));
 | 
						|
 | 
						|
    base = BASE;
 | 
						|
    sqrtBase = SQRT_BASE;
 | 
						|
 | 
						|
    for (i = ycL; --i >= 0;) {
 | 
						|
      c = 0;
 | 
						|
      ylo = yc[i] % sqrtBase;
 | 
						|
      yhi = yc[i] / sqrtBase | 0;
 | 
						|
 | 
						|
      for (k = xcL, j = i + k; j > i;) {
 | 
						|
        xlo = xc[--k] % sqrtBase;
 | 
						|
        xhi = xc[k] / sqrtBase | 0;
 | 
						|
        m = yhi * xlo + xhi * ylo;
 | 
						|
        xlo = ylo * xlo + ((m % sqrtBase) * sqrtBase) + zc[j] + c;
 | 
						|
        c = (xlo / base | 0) + (m / sqrtBase | 0) + yhi * xhi;
 | 
						|
        zc[j--] = xlo % base;
 | 
						|
      }
 | 
						|
 | 
						|
      zc[j] = c;
 | 
						|
    }
 | 
						|
 | 
						|
    if (c) {
 | 
						|
      ++e;
 | 
						|
    } else {
 | 
						|
      zc.splice(0, 1);
 | 
						|
    }
 | 
						|
 | 
						|
    return normalise(y, zc, e);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return a new BigNumber whose value is the value of this BigNumber negated,
 | 
						|
   * i.e. multiplied by -1.
 | 
						|
   */
 | 
						|
  P.negated = function () {
 | 
						|
    var x = new BigNumber(this);
 | 
						|
    x.s = -x.s || null;
 | 
						|
    return x;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   *  n + 0 = n
 | 
						|
   *  n + N = N
 | 
						|
   *  n + I = I
 | 
						|
   *  0 + n = n
 | 
						|
   *  0 + 0 = 0
 | 
						|
   *  0 + N = N
 | 
						|
   *  0 + I = I
 | 
						|
   *  N + n = N
 | 
						|
   *  N + 0 = N
 | 
						|
   *  N + N = N
 | 
						|
   *  N + I = N
 | 
						|
   *  I + n = I
 | 
						|
   *  I + 0 = I
 | 
						|
   *  I + N = N
 | 
						|
   *  I + I = I
 | 
						|
   *
 | 
						|
   * Return a new BigNumber whose value is the value of this BigNumber plus the value of
 | 
						|
   * BigNumber(y, b).
 | 
						|
   */
 | 
						|
  P.plus = function (y, b) {
 | 
						|
    var t,
 | 
						|
      x = this,
 | 
						|
      a = x.s;
 | 
						|
 | 
						|
    y = new BigNumber(y, b);
 | 
						|
    b = y.s;
 | 
						|
 | 
						|
    // Either NaN?
 | 
						|
    if (!a || !b) return new BigNumber(NaN);
 | 
						|
 | 
						|
    // Signs differ?
 | 
						|
     if (a != b) {
 | 
						|
      y.s = -b;
 | 
						|
      return x.minus(y);
 | 
						|
    }
 | 
						|
 | 
						|
    var xe = x.e / LOG_BASE,
 | 
						|
      ye = y.e / LOG_BASE,
 | 
						|
      xc = x.c,
 | 
						|
      yc = y.c;
 | 
						|
 | 
						|
    if (!xe || !ye) {
 | 
						|
 | 
						|
      // Return ±Infinity if either ±Infinity.
 | 
						|
      if (!xc || !yc) return new BigNumber(a / 0);
 | 
						|
 | 
						|
      // Either zero?
 | 
						|
      // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
 | 
						|
      if (!xc[0] || !yc[0]) return yc[0] ? y : new BigNumber(xc[0] ? x : a * 0);
 | 
						|
    }
 | 
						|
 | 
						|
    xe = bitFloor(xe);
 | 
						|
    ye = bitFloor(ye);
 | 
						|
    xc = xc.slice();
 | 
						|
 | 
						|
    // Prepend zeros to equalise exponents. Faster to use reverse then do unshifts.
 | 
						|
    if (a = xe - ye) {
 | 
						|
      if (a > 0) {
 | 
						|
        ye = xe;
 | 
						|
        t = yc;
 | 
						|
      } else {
 | 
						|
        a = -a;
 | 
						|
        t = xc;
 | 
						|
      }
 | 
						|
 | 
						|
      t.reverse();
 | 
						|
      for (; a--; t.push(0));
 | 
						|
      t.reverse();
 | 
						|
    }
 | 
						|
 | 
						|
    a = xc.length;
 | 
						|
    b = yc.length;
 | 
						|
 | 
						|
    // Point xc to the longer array, and b to the shorter length.
 | 
						|
    if (a - b < 0) {
 | 
						|
      t = yc;
 | 
						|
      yc = xc;
 | 
						|
      xc = t;
 | 
						|
      b = a;
 | 
						|
    }
 | 
						|
 | 
						|
    // Only start adding at yc.length - 1 as the further digits of xc can be ignored.
 | 
						|
    for (a = 0; b;) {
 | 
						|
      a = (xc[--b] = xc[b] + yc[b] + a) / BASE | 0;
 | 
						|
      xc[b] = BASE === xc[b] ? 0 : xc[b] % BASE;
 | 
						|
    }
 | 
						|
 | 
						|
    if (a) {
 | 
						|
      xc = [a].concat(xc);
 | 
						|
      ++ye;
 | 
						|
    }
 | 
						|
 | 
						|
    // No need to check for zero, as +x + +y != 0 && -x + -y != 0
 | 
						|
    // ye = MAX_EXP + 1 possible
 | 
						|
    return normalise(y, xc, ye);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * If sd is undefined or null or true or false, return the number of significant digits of
 | 
						|
   * the value of this BigNumber, or null if the value of this BigNumber is ±Infinity or NaN.
 | 
						|
   * If sd is true include integer-part trailing zeros in the count.
 | 
						|
   *
 | 
						|
   * Otherwise, if sd is a number, return a new BigNumber whose value is the value of this
 | 
						|
   * BigNumber rounded to a maximum of sd significant digits using rounding mode rm, or
 | 
						|
   * ROUNDING_MODE if rm is omitted.
 | 
						|
   *
 | 
						|
   * sd {number|boolean} number: significant digits: integer, 1 to MAX inclusive.
 | 
						|
   *                     boolean: whether to count integer-part trailing zeros: true or false.
 | 
						|
   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | 
						|
   *
 | 
						|
   * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {sd|rm}'
 | 
						|
   */
 | 
						|
  P.precision = P.sd = function (sd, rm) {
 | 
						|
    var c, n, v,
 | 
						|
      x = this;
 | 
						|
 | 
						|
    if (sd != null && sd !== !!sd) {
 | 
						|
      intCheck(sd, 1, MAX);
 | 
						|
      if (rm == null) rm = ROUNDING_MODE;
 | 
						|
      else intCheck(rm, 0, 8);
 | 
						|
 | 
						|
      return round(new BigNumber(x), sd, rm);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!(c = x.c)) return null;
 | 
						|
    v = c.length - 1;
 | 
						|
    n = v * LOG_BASE + 1;
 | 
						|
 | 
						|
    if (v = c[v]) {
 | 
						|
 | 
						|
      // Subtract the number of trailing zeros of the last element.
 | 
						|
      for (; v % 10 == 0; v /= 10, n--);
 | 
						|
 | 
						|
      // Add the number of digits of the first element.
 | 
						|
      for (v = c[0]; v >= 10; v /= 10, n++);
 | 
						|
    }
 | 
						|
 | 
						|
    if (sd && x.e + 1 > n) n = x.e + 1;
 | 
						|
 | 
						|
    return n;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return a new BigNumber whose value is the value of this BigNumber shifted by k places
 | 
						|
   * (powers of 10). Shift to the right if n > 0, and to the left if n < 0.
 | 
						|
   *
 | 
						|
   * k {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive.
 | 
						|
   *
 | 
						|
   * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {k}'
 | 
						|
   */
 | 
						|
  P.shiftedBy = function (k) {
 | 
						|
    intCheck(k, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER);
 | 
						|
    return this.times('1e' + k);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   *  sqrt(-n) =  N
 | 
						|
   *  sqrt(N) =  N
 | 
						|
   *  sqrt(-I) =  N
 | 
						|
   *  sqrt(I) =  I
 | 
						|
   *  sqrt(0) =  0
 | 
						|
   *  sqrt(-0) = -0
 | 
						|
   *
 | 
						|
   * Return a new BigNumber whose value is the square root of the value of this BigNumber,
 | 
						|
   * rounded according to DECIMAL_PLACES and ROUNDING_MODE.
 | 
						|
   */
 | 
						|
  P.squareRoot = P.sqrt = function () {
 | 
						|
    var m, n, r, rep, t,
 | 
						|
      x = this,
 | 
						|
      c = x.c,
 | 
						|
      s = x.s,
 | 
						|
      e = x.e,
 | 
						|
      dp = DECIMAL_PLACES + 4,
 | 
						|
      half = new BigNumber('0.5');
 | 
						|
 | 
						|
    // Negative/NaN/Infinity/zero?
 | 
						|
    if (s !== 1 || !c || !c[0]) {
 | 
						|
      return new BigNumber(!s || s < 0 && (!c || c[0]) ? NaN : c ? x : 1 / 0);
 | 
						|
    }
 | 
						|
 | 
						|
    // Initial estimate.
 | 
						|
    s = Math.sqrt(+valueOf(x));
 | 
						|
 | 
						|
    // Math.sqrt underflow/overflow?
 | 
						|
    // Pass x to Math.sqrt as integer, then adjust the exponent of the result.
 | 
						|
    if (s == 0 || s == 1 / 0) {
 | 
						|
      n = coeffToString(c);
 | 
						|
      if ((n.length + e) % 2 == 0) n += '0';
 | 
						|
      s = Math.sqrt(+n);
 | 
						|
      e = bitFloor((e + 1) / 2) - (e < 0 || e % 2);
 | 
						|
 | 
						|
      if (s == 1 / 0) {
 | 
						|
        n = '5e' + e;
 | 
						|
      } else {
 | 
						|
        n = s.toExponential();
 | 
						|
        n = n.slice(0, n.indexOf('e') + 1) + e;
 | 
						|
      }
 | 
						|
 | 
						|
      r = new BigNumber(n);
 | 
						|
    } else {
 | 
						|
      r = new BigNumber(s + '');
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for zero.
 | 
						|
    // r could be zero if MIN_EXP is changed after the this value was created.
 | 
						|
    // This would cause a division by zero (x/t) and hence Infinity below, which would cause
 | 
						|
    // coeffToString to throw.
 | 
						|
    if (r.c[0]) {
 | 
						|
      e = r.e;
 | 
						|
      s = e + dp;
 | 
						|
      if (s < 3) s = 0;
 | 
						|
 | 
						|
      // Newton-Raphson iteration.
 | 
						|
      for (; ;) {
 | 
						|
        t = r;
 | 
						|
        r = half.times(t.plus(div(x, t, dp, 1)));
 | 
						|
 | 
						|
        if (coeffToString(t.c).slice(0, s) === (n = coeffToString(r.c)).slice(0, s)) {
 | 
						|
 | 
						|
          // The exponent of r may here be one less than the final result exponent,
 | 
						|
          // e.g 0.0009999 (e-4) --> 0.001 (e-3), so adjust s so the rounding digits
 | 
						|
          // are indexed correctly.
 | 
						|
          if (r.e < e) --s;
 | 
						|
          n = n.slice(s - 3, s + 1);
 | 
						|
 | 
						|
          // The 4th rounding digit may be in error by -1 so if the 4 rounding digits
 | 
						|
          // are 9999 or 4999 (i.e. approaching a rounding boundary) continue the
 | 
						|
          // iteration.
 | 
						|
          if (n == '9999' || !rep && n == '4999') {
 | 
						|
 | 
						|
            // On the first iteration only, check to see if rounding up gives the
 | 
						|
            // exact result as the nines may infinitely repeat.
 | 
						|
            if (!rep) {
 | 
						|
              round(t, t.e + DECIMAL_PLACES + 2, 0);
 | 
						|
 | 
						|
              if (t.times(t).eq(x)) {
 | 
						|
                r = t;
 | 
						|
                break;
 | 
						|
              }
 | 
						|
            }
 | 
						|
 | 
						|
            dp += 4;
 | 
						|
            s += 4;
 | 
						|
            rep = 1;
 | 
						|
          } else {
 | 
						|
 | 
						|
            // If rounding digits are null, 0{0,4} or 50{0,3}, check for exact
 | 
						|
            // result. If not, then there are further digits and m will be truthy.
 | 
						|
            if (!+n || !+n.slice(1) && n.charAt(0) == '5') {
 | 
						|
 | 
						|
              // Truncate to the first rounding digit.
 | 
						|
              round(r, r.e + DECIMAL_PLACES + 2, 1);
 | 
						|
              m = !r.times(r).eq(x);
 | 
						|
            }
 | 
						|
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return round(r, r.e + DECIMAL_PLACES + 1, ROUNDING_MODE, m);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return a string representing the value of this BigNumber in exponential notation and
 | 
						|
   * rounded using ROUNDING_MODE to dp fixed decimal places.
 | 
						|
   *
 | 
						|
   * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
 | 
						|
   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | 
						|
   *
 | 
						|
   * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
 | 
						|
   */
 | 
						|
  P.toExponential = function (dp, rm) {
 | 
						|
    if (dp != null) {
 | 
						|
      intCheck(dp, 0, MAX);
 | 
						|
      dp++;
 | 
						|
    }
 | 
						|
    return format(this, dp, rm, 1);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return a string representing the value of this BigNumber in fixed-point notation rounding
 | 
						|
   * to dp fixed decimal places using rounding mode rm, or ROUNDING_MODE if rm is omitted.
 | 
						|
   *
 | 
						|
   * Note: as with JavaScript's number type, (-0).toFixed(0) is '0',
 | 
						|
   * but e.g. (-0.00001).toFixed(0) is '-0'.
 | 
						|
   *
 | 
						|
   * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
 | 
						|
   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | 
						|
   *
 | 
						|
   * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
 | 
						|
   */
 | 
						|
  P.toFixed = function (dp, rm) {
 | 
						|
    if (dp != null) {
 | 
						|
      intCheck(dp, 0, MAX);
 | 
						|
      dp = dp + this.e + 1;
 | 
						|
    }
 | 
						|
    return format(this, dp, rm);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return a string representing the value of this BigNumber in fixed-point notation rounded
 | 
						|
   * using rm or ROUNDING_MODE to dp decimal places, and formatted according to the properties
 | 
						|
   * of the format or FORMAT object (see BigNumber.set).
 | 
						|
   *
 | 
						|
   * The formatting object may contain some or all of the properties shown below.
 | 
						|
   *
 | 
						|
   * FORMAT = {
 | 
						|
   *   prefix: '',
 | 
						|
   *   groupSize: 3,
 | 
						|
   *   secondaryGroupSize: 0,
 | 
						|
   *   groupSeparator: ',',
 | 
						|
   *   decimalSeparator: '.',
 | 
						|
   *   fractionGroupSize: 0,
 | 
						|
   *   fractionGroupSeparator: '\xA0',      // non-breaking space
 | 
						|
   *   suffix: ''
 | 
						|
   * };
 | 
						|
   *
 | 
						|
   * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
 | 
						|
   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | 
						|
   * [format] {object} Formatting options. See FORMAT pbject above.
 | 
						|
   *
 | 
						|
   * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
 | 
						|
   * '[BigNumber Error] Argument not an object: {format}'
 | 
						|
   */
 | 
						|
  P.toFormat = function (dp, rm, format) {
 | 
						|
    var str,
 | 
						|
      x = this;
 | 
						|
 | 
						|
    if (format == null) {
 | 
						|
      if (dp != null && rm && typeof rm == 'object') {
 | 
						|
        format = rm;
 | 
						|
        rm = null;
 | 
						|
      } else if (dp && typeof dp == 'object') {
 | 
						|
        format = dp;
 | 
						|
        dp = rm = null;
 | 
						|
      } else {
 | 
						|
        format = FORMAT;
 | 
						|
      }
 | 
						|
    } else if (typeof format != 'object') {
 | 
						|
      throw Error
 | 
						|
        (bignumberError + 'Argument not an object: ' + format);
 | 
						|
    }
 | 
						|
 | 
						|
    str = x.toFixed(dp, rm);
 | 
						|
 | 
						|
    if (x.c) {
 | 
						|
      var i,
 | 
						|
        arr = str.split('.'),
 | 
						|
        g1 = +format.groupSize,
 | 
						|
        g2 = +format.secondaryGroupSize,
 | 
						|
        groupSeparator = format.groupSeparator || '',
 | 
						|
        intPart = arr[0],
 | 
						|
        fractionPart = arr[1],
 | 
						|
        isNeg = x.s < 0,
 | 
						|
        intDigits = isNeg ? intPart.slice(1) : intPart,
 | 
						|
        len = intDigits.length;
 | 
						|
 | 
						|
      if (g2) {
 | 
						|
        i = g1;
 | 
						|
        g1 = g2;
 | 
						|
        g2 = i;
 | 
						|
        len -= i;
 | 
						|
      }
 | 
						|
 | 
						|
      if (g1 > 0 && len > 0) {
 | 
						|
        i = len % g1 || g1;
 | 
						|
        intPart = intDigits.substr(0, i);
 | 
						|
        for (; i < len; i += g1) intPart += groupSeparator + intDigits.substr(i, g1);
 | 
						|
        if (g2 > 0) intPart += groupSeparator + intDigits.slice(i);
 | 
						|
        if (isNeg) intPart = '-' + intPart;
 | 
						|
      }
 | 
						|
 | 
						|
      str = fractionPart
 | 
						|
       ? intPart + (format.decimalSeparator || '') + ((g2 = +format.fractionGroupSize)
 | 
						|
        ? fractionPart.replace(new RegExp('\\d{' + g2 + '}\\B', 'g'),
 | 
						|
         '$&' + (format.fractionGroupSeparator || ''))
 | 
						|
        : fractionPart)
 | 
						|
       : intPart;
 | 
						|
    }
 | 
						|
 | 
						|
    return (format.prefix || '') + str + (format.suffix || '');
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return an array of two BigNumbers representing the value of this BigNumber as a simple
 | 
						|
   * fraction with an integer numerator and an integer denominator.
 | 
						|
   * The denominator will be a positive non-zero value less than or equal to the specified
 | 
						|
   * maximum denominator. If a maximum denominator is not specified, the denominator will be
 | 
						|
   * the lowest value necessary to represent the number exactly.
 | 
						|
   *
 | 
						|
   * [md] {number|string|BigNumber} Integer >= 1, or Infinity. The maximum denominator.
 | 
						|
   *
 | 
						|
   * '[BigNumber Error] Argument {not an integer|out of range} : {md}'
 | 
						|
   */
 | 
						|
  P.toFraction = function (md) {
 | 
						|
    var d, d0, d1, d2, e, exp, n, n0, n1, q, r, s,
 | 
						|
      x = this,
 | 
						|
      xc = x.c;
 | 
						|
 | 
						|
    if (md != null) {
 | 
						|
      n = new BigNumber(md);
 | 
						|
 | 
						|
      // Throw if md is less than one or is not an integer, unless it is Infinity.
 | 
						|
      if (!n.isInteger() && (n.c || n.s !== 1) || n.lt(ONE)) {
 | 
						|
        throw Error
 | 
						|
          (bignumberError + 'Argument ' +
 | 
						|
            (n.isInteger() ? 'out of range: ' : 'not an integer: ') + valueOf(n));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!xc) return new BigNumber(x);
 | 
						|
 | 
						|
    d = new BigNumber(ONE);
 | 
						|
    n1 = d0 = new BigNumber(ONE);
 | 
						|
    d1 = n0 = new BigNumber(ONE);
 | 
						|
    s = coeffToString(xc);
 | 
						|
 | 
						|
    // Determine initial denominator.
 | 
						|
    // d is a power of 10 and the minimum max denominator that specifies the value exactly.
 | 
						|
    e = d.e = s.length - x.e - 1;
 | 
						|
    d.c[0] = POWS_TEN[(exp = e % LOG_BASE) < 0 ? LOG_BASE + exp : exp];
 | 
						|
    md = !md || n.comparedTo(d) > 0 ? (e > 0 ? d : n1) : n;
 | 
						|
 | 
						|
    exp = MAX_EXP;
 | 
						|
    MAX_EXP = 1 / 0;
 | 
						|
    n = new BigNumber(s);
 | 
						|
 | 
						|
    // n0 = d1 = 0
 | 
						|
    n0.c[0] = 0;
 | 
						|
 | 
						|
    for (; ;)  {
 | 
						|
      q = div(n, d, 0, 1);
 | 
						|
      d2 = d0.plus(q.times(d1));
 | 
						|
      if (d2.comparedTo(md) == 1) break;
 | 
						|
      d0 = d1;
 | 
						|
      d1 = d2;
 | 
						|
      n1 = n0.plus(q.times(d2 = n1));
 | 
						|
      n0 = d2;
 | 
						|
      d = n.minus(q.times(d2 = d));
 | 
						|
      n = d2;
 | 
						|
    }
 | 
						|
 | 
						|
    d2 = div(md.minus(d0), d1, 0, 1);
 | 
						|
    n0 = n0.plus(d2.times(n1));
 | 
						|
    d0 = d0.plus(d2.times(d1));
 | 
						|
    n0.s = n1.s = x.s;
 | 
						|
    e = e * 2;
 | 
						|
 | 
						|
    // Determine which fraction is closer to x, n0/d0 or n1/d1
 | 
						|
    r = div(n1, d1, e, ROUNDING_MODE).minus(x).abs().comparedTo(
 | 
						|
        div(n0, d0, e, ROUNDING_MODE).minus(x).abs()) < 1 ? [n1, d1] : [n0, d0];
 | 
						|
 | 
						|
    MAX_EXP = exp;
 | 
						|
 | 
						|
    return r;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return the value of this BigNumber converted to a number primitive.
 | 
						|
   */
 | 
						|
  P.toNumber = function () {
 | 
						|
    return +valueOf(this);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return a string representing the value of this BigNumber rounded to sd significant digits
 | 
						|
   * using rounding mode rm or ROUNDING_MODE. If sd is less than the number of digits
 | 
						|
   * necessary to represent the integer part of the value in fixed-point notation, then use
 | 
						|
   * exponential notation.
 | 
						|
   *
 | 
						|
   * [sd] {number} Significant digits. Integer, 1 to MAX inclusive.
 | 
						|
   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | 
						|
   *
 | 
						|
   * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {sd|rm}'
 | 
						|
   */
 | 
						|
  P.toPrecision = function (sd, rm) {
 | 
						|
    if (sd != null) intCheck(sd, 1, MAX);
 | 
						|
    return format(this, sd, rm, 2);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return a string representing the value of this BigNumber in base b, or base 10 if b is
 | 
						|
   * omitted. If a base is specified, including base 10, round according to DECIMAL_PLACES and
 | 
						|
   * ROUNDING_MODE. If a base is not specified, and this BigNumber has a positive exponent
 | 
						|
   * that is equal to or greater than TO_EXP_POS, or a negative exponent equal to or less than
 | 
						|
   * TO_EXP_NEG, return exponential notation.
 | 
						|
   *
 | 
						|
   * [b] {number} Integer, 2 to ALPHABET.length inclusive.
 | 
						|
   *
 | 
						|
   * '[BigNumber Error] Base {not a primitive number|not an integer|out of range}: {b}'
 | 
						|
   */
 | 
						|
  P.toString = function (b) {
 | 
						|
    var str,
 | 
						|
      n = this,
 | 
						|
      s = n.s,
 | 
						|
      e = n.e;
 | 
						|
 | 
						|
    // Infinity or NaN?
 | 
						|
    if (e === null) {
 | 
						|
      if (s) {
 | 
						|
        str = 'Infinity';
 | 
						|
        if (s < 0) str = '-' + str;
 | 
						|
      } else {
 | 
						|
        str = 'NaN';
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (b == null) {
 | 
						|
        str = e <= TO_EXP_NEG || e >= TO_EXP_POS
 | 
						|
         ? toExponential(coeffToString(n.c), e)
 | 
						|
         : toFixedPoint(coeffToString(n.c), e, '0');
 | 
						|
      } else if (b === 10 && alphabetHasNormalDecimalDigits) {
 | 
						|
        n = round(new BigNumber(n), DECIMAL_PLACES + e + 1, ROUNDING_MODE);
 | 
						|
        str = toFixedPoint(coeffToString(n.c), n.e, '0');
 | 
						|
      } else {
 | 
						|
        intCheck(b, 2, ALPHABET.length, 'Base');
 | 
						|
        str = convertBase(toFixedPoint(coeffToString(n.c), e, '0'), 10, b, s, true);
 | 
						|
      }
 | 
						|
 | 
						|
      if (s < 0 && n.c[0]) str = '-' + str;
 | 
						|
    }
 | 
						|
 | 
						|
    return str;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /*
 | 
						|
   * Return as toString, but do not accept a base argument, and include the minus sign for
 | 
						|
   * negative zero.
 | 
						|
   */
 | 
						|
  P.valueOf = P.toJSON = function () {
 | 
						|
    return valueOf(this);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  P._isBigNumber = true;
 | 
						|
 | 
						|
  P[Symbol.toStringTag] = 'BigNumber';
 | 
						|
 | 
						|
  // Node.js v10.12.0+
 | 
						|
  P[Symbol.for('nodejs.util.inspect.custom')] = P.valueOf;
 | 
						|
 | 
						|
  if (configObject != null) BigNumber.set(configObject);
 | 
						|
 | 
						|
  return BigNumber;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// PRIVATE HELPER FUNCTIONS
 | 
						|
 | 
						|
// These functions don't need access to variables,
 | 
						|
// e.g. DECIMAL_PLACES, in the scope of the `clone` function above.
 | 
						|
 | 
						|
 | 
						|
function bitFloor(n) {
 | 
						|
  var i = n | 0;
 | 
						|
  return n > 0 || n === i ? i : i - 1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Return a coefficient array as a string of base 10 digits.
 | 
						|
function coeffToString(a) {
 | 
						|
  var s, z,
 | 
						|
    i = 1,
 | 
						|
    j = a.length,
 | 
						|
    r = a[0] + '';
 | 
						|
 | 
						|
  for (; i < j;) {
 | 
						|
    s = a[i++] + '';
 | 
						|
    z = LOG_BASE - s.length;
 | 
						|
    for (; z--; s = '0' + s);
 | 
						|
    r += s;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine trailing zeros.
 | 
						|
  for (j = r.length; r.charCodeAt(--j) === 48;);
 | 
						|
 | 
						|
  return r.slice(0, j + 1 || 1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Compare the value of BigNumbers x and y.
 | 
						|
function compare(x, y) {
 | 
						|
  var a, b,
 | 
						|
    xc = x.c,
 | 
						|
    yc = y.c,
 | 
						|
    i = x.s,
 | 
						|
    j = y.s,
 | 
						|
    k = x.e,
 | 
						|
    l = y.e;
 | 
						|
 | 
						|
  // Either NaN?
 | 
						|
  if (!i || !j) return null;
 | 
						|
 | 
						|
  a = xc && !xc[0];
 | 
						|
  b = yc && !yc[0];
 | 
						|
 | 
						|
  // Either zero?
 | 
						|
  if (a || b) return a ? b ? 0 : -j : i;
 | 
						|
 | 
						|
  // Signs differ?
 | 
						|
  if (i != j) return i;
 | 
						|
 | 
						|
  a = i < 0;
 | 
						|
  b = k == l;
 | 
						|
 | 
						|
  // Either Infinity?
 | 
						|
  if (!xc || !yc) return b ? 0 : !xc ^ a ? 1 : -1;
 | 
						|
 | 
						|
  // Compare exponents.
 | 
						|
  if (!b) return k > l ^ a ? 1 : -1;
 | 
						|
 | 
						|
  j = (k = xc.length) < (l = yc.length) ? k : l;
 | 
						|
 | 
						|
  // Compare digit by digit.
 | 
						|
  for (i = 0; i < j; i++) if (xc[i] != yc[i]) return xc[i] > yc[i] ^ a ? 1 : -1;
 | 
						|
 | 
						|
  // Compare lengths.
 | 
						|
  return k == l ? 0 : k > l ^ a ? 1 : -1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Check that n is a primitive number, an integer, and in range, otherwise throw.
 | 
						|
 */
 | 
						|
function intCheck(n, min, max, name) {
 | 
						|
  if (n < min || n > max || n !== mathfloor(n)) {
 | 
						|
    throw Error
 | 
						|
     (bignumberError + (name || 'Argument') + (typeof n == 'number'
 | 
						|
       ? n < min || n > max ? ' out of range: ' : ' not an integer: '
 | 
						|
       : ' not a primitive number: ') + String(n));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Assumes finite n.
 | 
						|
function isOdd(n) {
 | 
						|
  var k = n.c.length - 1;
 | 
						|
  return bitFloor(n.e / LOG_BASE) == k && n.c[k] % 2 != 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
function toExponential(str, e) {
 | 
						|
  return (str.length > 1 ? str.charAt(0) + '.' + str.slice(1) : str) +
 | 
						|
   (e < 0 ? 'e' : 'e+') + e;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
function toFixedPoint(str, e, z) {
 | 
						|
  var len, zs;
 | 
						|
 | 
						|
  // Negative exponent?
 | 
						|
  if (e < 0) {
 | 
						|
 | 
						|
    // Prepend zeros.
 | 
						|
    for (zs = z + '.'; ++e; zs += z);
 | 
						|
    str = zs + str;
 | 
						|
 | 
						|
  // Positive exponent
 | 
						|
  } else {
 | 
						|
    len = str.length;
 | 
						|
 | 
						|
    // Append zeros.
 | 
						|
    if (++e > len) {
 | 
						|
      for (zs = z, e -= len; --e; zs += z);
 | 
						|
      str += zs;
 | 
						|
    } else if (e < len) {
 | 
						|
      str = str.slice(0, e) + '.' + str.slice(e);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return str;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// EXPORT
 | 
						|
 | 
						|
 | 
						|
export var BigNumber = clone();
 | 
						|
 | 
						|
export default BigNumber;
 |